Mechano-electronic Superlattices in Silicon Nanoribbons

被引:63
作者
Huang, Minghuang [1 ]
Ritz, Clark S. [2 ]
Novakovic, Boziclar [3 ]
Yu, Decai [4 ]
Zhang, Yu [4 ]
Flack, Frank [1 ]
Savage, Donald E. [1 ]
Evans, Paul G. [1 ]
Knezevic, Irena [3 ]
Liu, Feng [4 ]
Lagally, Max G. [1 ,2 ]
机构
[1] Univ Wisconsin, Dept Mat Sci & Engn, Madison, WI 53706 USA
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Elect & Comp Engn, Madison, WI 53706 USA
[4] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
基金
美国国家科学基金会;
关键词
silicon nanomembrane; Ge quantum dots; strain superlattice; minibands; Seebeck coefficient; GROWTH; GE; SI; PERFORMANCE; MOBILITY;
D O I
10.1021/nn8008883
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Significant new mechanical and electronic phenomena can arise in single-crystal semiconductors when their thickness reaches nanometer dimensions, where the two surfaces of the crystal are physically close enough to each other that what happens at one surface influences what happens at the other. We show experimentally that, in silicon nanomembranes, through-membrane elastic interactions cause the double-sided ordering of epitaxially grown nanostressors that locally and periodically highly strains the membrane, leading to a strain lattice. Because strain influences band structure, we create a periodic band gap modulation, up to 20% of the band gap, effectively an electronic superlattice. Our calculations demonstrate that discrete minibands can form in the potential wells of an electronic superlattice generated by Ge nanostressors on a sufficiently thin Si(001) nanomembrane at the temperature of 77 K. We predict that it is possible to observe discrete minibands in Si nanoribbons at room temperature if nanostressors of a different material are grown.
引用
收藏
页码:721 / 727
页数:7
相关论文
共 30 条
[1]   Silicon nanowires as efficient thermoelectric materials [J].
Boukai, Akram I. ;
Bunimovich, Yuri ;
Tahir-Kheli, Jamil ;
Yu, Jen-Kan ;
Goddard, William A., III ;
Heath, James R. .
NATURE, 2008, 451 (7175) :168-171
[2]   Etching of silicon by the RCA Standard Clean 1 [J].
Celler, GK ;
Barr, DL ;
Rosamilia, JM .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2000, 3 (01) :47-49
[3]   Influence of strain on the conduction band structure of strained silicon nanomembranes [J].
Euaruksakul, C. ;
Li, Z. W. ;
Zheng, F. ;
Himpsel, F. J. ;
Ritz, C. S. ;
Tanto, B. ;
Savage, D. E. ;
Liu, X. S. ;
Lagally, M. G. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[4]   Band structure, deformation potentals, and carrier mobility in strained Si, Ge, and SiGe alloys [J].
Fischetti, MV ;
Laux, SE .
JOURNAL OF APPLIED PHYSICS, 1996, 80 (04) :2234-2252
[5]   Enhanced thermoelectric performance of rough silicon nanowires [J].
Hochbaum, Allon I. ;
Chen, Renkun ;
Delgado, Raul Diaz ;
Liang, Wenjie ;
Garnett, Erik C. ;
Najarian, Mark ;
Majumdar, Arun ;
Yang, Peidong .
NATURE, 2008, 451 (7175) :163-U5
[6]   MECHANICAL MEASUREMENT OF RED-CELL MEMBRANE THICKNESS [J].
HOCHMUTH, RM ;
EVANS, EA ;
WILES, HC ;
MCCOWN, JT .
SCIENCE, 1983, 220 (4592) :101-102
[7]   Capillary wrinkling of floating thin polymer films [J].
Huang, Jiangshui ;
Juszkiewicz, Megan ;
de Jeu, Wim H. ;
Cerda, Enrique ;
Emrick, Todd ;
Menon, Narayanan ;
Russell, Thomas P. .
SCIENCE, 2007, 317 (5838) :650-653
[8]  
HUANG M, UNPUB
[9]   Bending of nanoscale ultrathin substrates by growth of strained thin films and islands [J].
Huang, MH ;
Rugheimer, P ;
Lagally, MG ;
Liu, F .
PHYSICAL REVIEW B, 2005, 72 (08)
[10]   Nanomechanical architecture of strained bilayer thin films: From design principles to experimental fabrication [J].
Huang, MH ;
Boone, C ;
Roberts, M ;
Savage, DE ;
Lagally, MG ;
Shaji, N ;
Qin, H ;
Blick, R ;
Nairn, JA ;
Liu, F .
ADVANCED MATERIALS, 2005, 17 (23) :2860-+