Non-invasive mapping of corticofugal fibres from multiple motor areas - relevance to stroke recovery

被引:182
作者
Newton, Jennifer M.
Ward, Nick S.
Parker, Geoffrey J. M.
Deichmann, Ralf
Alexander, Daniel C.
Friston, Karl J.
Frackowiak, Richard S. J.
机构
[1] UCL, Wellcome Dept Imaging Neurosci, London, England
[2] UCL, Dept Headache Brain Injury & Rehabil, Inst Neurol, London, England
[3] UCL, Dept Comp Sci, London, England
[4] Univ Manchester, Manchester, Lancs, England
[5] IRRCS Santa Lucia, Rome, Italy
[6] Ecole Normale Super, Dept Etudes Cognit, F-75231 Paris, France
基金
英国工程与自然科学研究理事会; 英国惠康基金;
关键词
diffusion tensor; tractography; stroke; motor recovery; functional MRI;
D O I
10.1093/brain/awl106
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Recovery of motor function after subcortical stroke appears to be related to the integrity of descending connections from the ipsilesional cortical motor system, a view supported by the observation of greater than normal movement-related activation in ipsilesional motor regions in chronic subcortical stroke patients. This suggests that damage to the descending output fibres from one region of the cortical motor system may be compensated by activity in areas that retain corticofugal outputs. Though the trajectories of corticofugal fibres from each major component of the motor system through the corona radiata and internal capsule are well described in non-human primates, they have not been described fully in humans. Our study set out to map the trajectories of these connections in a group of healthy volunteers (8 male, 4 female; age range = 31-68 years, median = 48.5 years) and establish whether this knowledge can be used to assess stroke-induced disconnection of the cortical motor system and better interpret functional reorganization of the cortical motor system. We describe the trajectories of the connections from each major component of the motor system to the cerebral peduncle using diffusion-weighted imaging and probabilistic tractography in normal subjects. We observed good reproducibility of these connections over subjects. The comparative topography of these connections revealed many similarities between humans and other primates. We then inferred damage to corticofugal pathways in stroke patients (n = 3) by comparing the overlap between regions of subcortical white matter damage with the trajectories of the connections to each motor area. In a small series of case studies, we found that inferred disconnections could explain enhanced hand-grip-related responses, as assessed with functional MRI, in the ipsilesional motor system. These results confirm that selective disruption of motor corticofugal fibres influences functional reorganization and outcome in individual patients.
引用
收藏
页码:1844 / 1858
页数:15
相关论文
共 59 条
[1]   Detection and modeling of non-Gaussian apparent diffusion coefficient profiles in human brain data [J].
Alexander, DC ;
Barker, GJ ;
Arridge, SR .
MAGNETIC RESONANCE IN MEDICINE, 2002, 48 (02) :331-340
[2]   Modeling geometric deformations in EPI time series [J].
Andersson, JLR ;
Hutton, C ;
Ashburner, J ;
Turner, R ;
Friston, K .
NEUROIMAGE, 2001, 13 (05) :903-919
[3]   Unified segmentation [J].
Ashburner, J ;
Friston, KJ .
NEUROIMAGE, 2005, 26 (03) :839-851
[4]   Characterization and propagation of uncertainty in diffusion-weighted MR imaging [J].
Behrens, TEJ ;
Woolrich, MW ;
Jenkinson, M ;
Johansen-Berg, H ;
Nunes, RG ;
Clare, S ;
Matthews, PM ;
Brady, JM ;
Smith, SM .
MAGNETIC RESONANCE IN MEDICINE, 2003, 50 (05) :1077-1088
[5]   CORTICAL-NEURONS PROJECTING TO CERVICAL AND LUMBAR ENLARGEMENTS OF SPINAL-CORD IN YOUNG AND ADULT RHESUS-MONKEYS [J].
BIBER, MP ;
KNEISLEY, LW ;
LAVAIL, JH .
EXPERIMENTAL NEUROLOGY, 1978, 59 (03) :492-508
[6]   CELLS OF ORIGIN OF CORTICAL PROJECTIONS TO DORSAL COLUMN NUCLEI, SPINAL-CORD AND BULBAR MEDIAL RETICULAR-FORMATION IN RHESUS-MONKEY [J].
CATSMANBERREVOETS, CE ;
KUYPERS, HGJM .
NEUROSCIENCE LETTERS, 1976, 3 (5-6) :245-252
[7]   Diffusion tractography based group mapping of major white-matter pathways in the human brain [J].
Ciccarelli, O ;
Toosy, AT ;
Parker, GJM ;
Wheeler-Kingshott, CAM ;
Barker, GJ ;
Miller, DH ;
Thompson, AJ .
NEUROIMAGE, 2003, 19 (04) :1545-1555
[8]   Tracking neuronal fiber pathways in the living human brain [J].
Conturo, TE ;
Lori, NF ;
Cull, TS ;
Akbudak, E ;
Snyder, AZ ;
Shimony, JS ;
McKinstry, RC ;
Burton, H ;
Raichle, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (18) :10422-10427
[9]   Optimization of 3-D MP-RAGE sequences for structural brain imaging [J].
Deichmann, R ;
Good, CD ;
Josephs, O ;
Ashburner, J ;
Turner, R .
NEUROIMAGE, 2000, 12 (01) :112-127
[10]   Optimisation of the 3D MDEFT sequence for anatomical brain imaging: Technical implications at 1.5 and 3 T [J].
Deichmann, R ;
Schwarzbauer, C ;
Turner, R .
NEUROIMAGE, 2004, 21 (02) :757-767