Lithium Ion Battery Peformance of Silicon Nanowires with Carbon Skin

被引:192
作者
Bogart, Timothy D. [1 ]
Oka, Daichi [2 ]
Lu, Xiaotang [1 ]
Gu, Meng [3 ]
Wang, Chongmin [3 ]
Korgel, Brian A. [1 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Texas Mat Inst, Ctr Nano & Mol Sci & Technol, Austin, TX 78712 USA
[2] Univ Tokyo, Dept Chem, Sch Sci, Bunkyo Ku, Tokyo 1130033, Japan
[3] Pacific NW Natl Lab, Environm Mol Sci Lab, Richland, WA 99354 USA
关键词
silicon; tin; nanowires; anode; carbon coating; lithium-ion battery; in situ TEM; HIGH-PERFORMANCE ANODE; SIZE-DEPENDENT FRACTURE; HIGH-CAPACITY; SFLS SYNTHESIS; LI; NANOPARTICLES; ELECTRODE; CORE; LITHIATION; NANOCOMPOSITES;
D O I
10.1021/nn405710w
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g(-1) for 100 cycles when cycled at C/10 and over 1200 mA h g(-1) when cycled more rapidly at 1C against Li metal. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.
引用
收藏
页码:915 / 922
页数:8
相关论文
共 59 条
[1]  
[Anonymous], 1984, B ALLOY PHASE DIAGR, DOI DOI 10.1007/BF02868552
[2]   Colossal reversible volume changes in lithium alloys [J].
Beaulieu, LY ;
Eberman, KW ;
Turner, RL ;
Krause, LJ ;
Dahn, JR .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2001, 4 (09) :A137-A140
[3]   High capacity lithium ion battery anodes of silicon and germanium [J].
Bogart, Timothy D. ;
Chockla, Aaron M. ;
Korgel, Brian A. .
CURRENT OPINION IN CHEMICAL ENGINEERING, 2013, 2 (03) :286-293
[4]   Precision synthesis of silicon nanowires with crystalline core and amorphous shell [J].
Bogart, Timothy D. ;
Lu, Xiaotang ;
Korgel, Brian A. .
DALTON TRANSACTIONS, 2013, 42 (35) :12675-12680
[5]   ALL-SOLID LITHIUM ELECTRODES WITH MIXED-CONDUCTOR MATRIX [J].
BOUKAMP, BA ;
LESH, GC ;
HUGGINS, RA .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1981, 128 (04) :725-729
[6]   Silicon nanowire anode: Improved battery life with capacity-limited cycling [J].
Chakrapani, Vidhya ;
Rusli, Florencia ;
Filler, Michael A. ;
Kohl, Paul A. .
JOURNAL OF POWER SOURCES, 2012, 205 :433-438
[7]   Quaternary Ammonium Ionic Liquid Electrolyte for a Silicon Nanowire-Based Lithium Ion Battery [J].
Chakrapani, Vidhya ;
Rusli, Florencia ;
Filler, Micheal A. ;
Kohl, Paul A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (44) :22048-22053
[8]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[9]   Solution-Grown Silicon Nanowires for Lithium-Ion Battery Anodes [J].
Chan, Candace K. ;
Patel, Reken N. ;
O'Connell, Michael J. ;
Korgel, Brian A. ;
Cui, Yi .
ACS NANO, 2010, 4 (03) :1443-1450
[10]   Silicon nanowires with and without carbon coating as anode materials for lithium-ion batteries [J].
Chen, Huixin ;
Dong, Zhixin ;
Fu, Yanpeng ;
Yang, Yong .
JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2010, 14 (10) :1829-1834