Multifractal analysis of the coupling space of feedforward neural networks

被引:15
作者
Engel, A
Weigt, M
机构
[1] Institut für Theoretische Physik, Otto-von-Guericke-Universität Magdeburg PSF 4120, Magdeburg
关键词
D O I
10.1103/PhysRevE.53.R2064
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random input patterns induce a partition of the coupling space of feedforward neural networks into different cells according to the generated output sequence. For the perceptron this partition forms a random multifractal for which the spectrum f(alpha) can be calculated analytically using the replica trick. A phase transition in the multifractal spectrum corresponds to the crossover from percolating to nonpercolating cell sizes. instabilities of negative moments are related to the Vapnik-Chervonenkis (VC) dimension [Theor. Prob. Appl. 16, 264 (1971)].
引用
收藏
页码:R2064 / R2067
页数:4
相关论文
共 32 条
[1]   ON THE MULTIFRACTAL NATURE OF FULLY-DEVELOPED TURBULENCE AND CHAOTIC SYSTEMS [J].
BENZI, R ;
PALADIN, G ;
PARISI, G ;
VULPIANI, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (18) :3521-3531
[2]  
BIEHL M, 1995, NEURAL NETWORKS STAT
[3]  
Bunde A., 1991, FRACTALS DISORDERED
[4]   GEOMETRICAL AND STATISTICAL PROPERTIES OF SYSTEMS OF LINEAR INEQUALITIES WITH APPLICATIONS IN PATTERN RECOGNITION [J].
COVER, TM .
IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, 1965, EC14 (03) :326-&
[5]   STABILITY OF SHERRINGTON-KIRKPATRICK SOLUTION OF A SPIN GLASS MODEL [J].
DEALMEIDA, JRL ;
THOULESS, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05) :983-990
[6]   FINITE-SIZE EFFECTS AND BOUNDS FOR PERCEPTRON MODELS [J].
DERRIDA, B ;
GRIFFITHS, RB ;
PRUGELBENNETT, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1991, 24 (20) :4907-4940
[7]  
Engel A., 1994, Modern Physics Letters B, V8, P1683, DOI 10.1142/S021798499400162X
[8]  
FEDER L, 1988, FRACTALS
[9]  
FRISCH U, 1985, TURBULENCE PREDICTAB
[10]   OPTIMAL STORAGE PROPERTIES OF NEURAL NETWORK MODELS [J].
GARDNER, E ;
DERRIDA, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01) :271-284