Multifractal analysis of the coupling space of feedforward neural networks

被引:15
作者
Engel, A
Weigt, M
机构
[1] Institut für Theoretische Physik, Otto-von-Guericke-Universität Magdeburg PSF 4120, Magdeburg
关键词
D O I
10.1103/PhysRevE.53.R2064
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Random input patterns induce a partition of the coupling space of feedforward neural networks into different cells according to the generated output sequence. For the perceptron this partition forms a random multifractal for which the spectrum f(alpha) can be calculated analytically using the replica trick. A phase transition in the multifractal spectrum corresponds to the crossover from percolating to nonpercolating cell sizes. instabilities of negative moments are related to the Vapnik-Chervonenkis (VC) dimension [Theor. Prob. Appl. 16, 264 (1971)].
引用
收藏
页码:R2064 / R2067
页数:4
相关论文
共 32 条
[11]   THE SPACE OF INTERACTIONS IN NEURAL NETWORK MODELS [J].
GARDNER, E .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1988, 21 (01) :257-270
[12]   MANIFOLDS IN RANDOM-MEDIA - MULTIFRACTAL BEHAVIOR [J].
GOLDSCHMIDT, YY ;
BLUM, T .
PHYSICAL REVIEW E, 1993, 48 (01) :161-170
[13]   GENERALIZED DIMENSIONS OF STRANGE ATTRACTORS [J].
GRASSBERGER, P .
PHYSICS LETTERS A, 1983, 97 (06) :227-230
[14]   INFERENCE OF A RULE BY A NEURAL NETWORK WITH THERMAL NOISE [J].
GYORGYI, G .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2957-2960
[15]  
GYORGYI G, 1990, WORKSHOP NEURAL NETW
[16]   FRACTAL MEASURES AND THEIR SINGULARITIES - THE CHARACTERIZATION OF STRANGE SETS [J].
HALSEY, TC ;
JENSEN, MH ;
KADANOFF, LP ;
PROCACCIA, I ;
SHRAIMAN, BI .
PHYSICAL REVIEW A, 1986, 33 (02) :1141-1151
[17]  
HAUSSLER D, 1991, P COLT 91
[18]  
HELMBOLD D, COMMUNICATION
[19]  
Hertz J., 1991, Introduction to the Theory of Neural Computation
[20]   RANDOM FRACTALS, PHASE-TRANSITIONS, AND NEGATIVE DIMENSION SPECTRA [J].
JENSEN, MH ;
PALADIN, G ;
VULPIANI, A .
PHYSICAL REVIEW E, 1994, 50 (06) :4352-4356