A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

被引:222
作者
Anthony, K. M. Walter [1 ]
Zimov, S. A. [2 ]
Grosse, G. [3 ]
Jones, M. C. [1 ,4 ]
Anthony, P. M. [1 ]
Chapin, F. S., III [5 ]
Finlay, J. C. [6 ]
Mack, M. C. [7 ]
Davydov, S. [2 ]
Frenzel, P. [8 ]
Frolking, S. [9 ]
机构
[1] Univ Alaska, Water & Environm Res Ctr, Fairbanks, AK 99775 USA
[2] Russian Acad Sci, Far East Branch, Northeast Sci Stn, Pacific Inst Geog, Cherskii 678830, Russia
[3] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA
[4] US Geol Survey, Reston, VA 20192 USA
[5] Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
[6] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA
[7] Univ Florida, Dept Biol, Gainesville, FL 32611 USA
[8] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[9] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
基金
美国国家科学基金会;
关键词
PERMAFROST; PEATLANDS; DISTURBANCE; LANDSCAPES; VEGETATION; EVOLUTION; LOWLAND; HISTORY; CLIMATE; SIBERIA;
D O I
10.1038/nature13560
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch(1-4). However, the same thermokarst lakes can also sequester carbon(5), and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 +/- 10 grams of carbon per square metre per year; mean +/- standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears(7-9), potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.
引用
收藏
页码:452 / +
页数:18
相关论文
共 75 条
  • [1] Land-use change, not climate, controls organic carbon burial in lakes
    Anderson, N. J.
    Dietz, R. D.
    Engstrom, D. R.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2013, 280 (1769)
  • [2] Weichselian and Holocene palaeoenvironmental history of the Bol'shoy Lyakhovsky Island, New Siberian Archipelago, Arctic Siberia
    Andreev, Andrei A.
    Grosse, Guido
    Schirrmeister, Lutz
    Kuznetsova, Tatiana V.
    Kuzmina, Svetlana A.
    Bobrov, Anatoly A.
    Tarasov, Pavel E.
    Novenko, Elena Y.
    Meyer, Hanno
    Derevyagin, Aleksandr Y.
    Kienast, Frank
    Bryantseva, Anna
    Kunitsky, Viktor V.
    [J]. BOREAS, 2009, 38 (01) : 72 - 110
  • [3] [Anonymous], 14 TIKH NAUCHN K KHA
  • [4] Avis CA, 2011, NAT GEOSCI, V4, P444, DOI [10.1038/ngeo1160, 10.1038/NGEO1160]
  • [5] INSOLATION VALUES FOR THE CLIMATE OF THE LAST 10000000 YEARS
    BERGER, A
    LOUTRE, MF
    [J]. QUATERNARY SCIENCE REVIEWS, 1991, 10 (04) : 297 - 317
  • [6] LONG-TERM EFFECTS OF PO4 FERTILIZATION ON THE DISTRIBUTION OF BRYOPHYTES IN AN ARCTIC RIVER
    BOWDEN, WB
    FINLAY, JC
    MALONEY, PE
    [J]. FRESHWATER BIOLOGY, 1994, 32 (02) : 445 - 454
  • [7] Using the deuterium isotope composition of permafrost meltwater to constrain thermokarst lake contributions to atmospheric CH4 during the last deglaciation
    Brosius, L. S.
    Anthony, K. M. Walter
    Grosse, G.
    Chanton, J. P.
    Farquharson, L. M.
    Overduin, P. P.
    Meyer, H.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2012, 117
  • [8] Thermokarst as a short-term permafrost disturbance, Central Yakutia
    Brouchkov, A
    Fukuda, M
    Fedorov, A
    Konstantinov, P
    Iwahana, G
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2004, 15 (01) : 81 - 87
  • [9] SIMPLE TITRIMETRIC METHOD FOR DETERMINATION OF INORGANIC CARBON IN SOILS
    BUNDY, LG
    BREMNER, JM
    [J]. SOIL SCIENCE SOCIETY OF AMERICA PROCEEDINGS, 1972, 36 (02): : 273 - &
  • [10] Czudek T., 1970, Quat. Res, V1, P103, DOI [DOI 10.1016/0033-5894(70)90013-X, 10.1016/0033-5894(70)90013-X]