A shift of thermokarst lakes from carbon sources to sinks during the Holocene epoch

被引:222
作者
Anthony, K. M. Walter [1 ]
Zimov, S. A. [2 ]
Grosse, G. [3 ]
Jones, M. C. [1 ,4 ]
Anthony, P. M. [1 ]
Chapin, F. S., III [5 ]
Finlay, J. C. [6 ]
Mack, M. C. [7 ]
Davydov, S. [2 ]
Frenzel, P. [8 ]
Frolking, S. [9 ]
机构
[1] Univ Alaska, Water & Environm Res Ctr, Fairbanks, AK 99775 USA
[2] Russian Acad Sci, Far East Branch, Northeast Sci Stn, Pacific Inst Geog, Cherskii 678830, Russia
[3] Univ Alaska, Inst Geophys, Fairbanks, AK 99775 USA
[4] US Geol Survey, Reston, VA 20192 USA
[5] Univ Alaska, Inst Arctic Biol, Fairbanks, AK 99775 USA
[6] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA
[7] Univ Florida, Dept Biol, Gainesville, FL 32611 USA
[8] Max Planck Inst Terr Microbiol, D-35043 Marburg, Germany
[9] Univ New Hampshire, Inst Study Earth Oceans & Space, Durham, NH 03824 USA
基金
美国国家科学基金会;
关键词
PERMAFROST; PEATLANDS; DISTURBANCE; LANDSCAPES; VEGETATION; EVOLUTION; LOWLAND; HISTORY; CLIMATE; SIBERIA;
D O I
10.1038/nature13560
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Thermokarst lakes formed across vast regions of Siberia and Alaska during the last deglaciation and are thought to be a net source of atmospheric methane and carbon dioxide during the Holocene epoch(1-4). However, the same thermokarst lakes can also sequester carbon(5), and it remains uncertain whether carbon uptake by thermokarst lakes can offset their greenhouse gas emissions. Here we use field observations of Siberian permafrost exposures, radiocarbon dating and spatial analyses to quantify Holocene carbon stocks and fluxes in lake sediments overlying thawed Pleistocene-aged permafrost. We find that carbon accumulation in deep thermokarst-lake sediments since the last deglaciation is about 1.6 times larger than the mass of Pleistocene-aged permafrost carbon released as greenhouse gases when the lakes first formed. Although methane and carbon dioxide emissions following thaw lead to immediate radiative warming, carbon uptake in peat-rich sediments occurs over millennial timescales. We assess thermokarst-lake carbon feedbacks to climate with an atmospheric perturbation model and find that thermokarst basins switched from a net radiative warming to a net cooling climate effect about 5,000 years ago. High rates of Holocene carbon accumulation in 20 lake sediments (47 +/- 10 grams of carbon per square metre per year; mean +/- standard error) were driven by thermokarst erosion and deposition of terrestrial organic matter, by nutrient release from thawing permafrost that stimulated lake productivity and by slow decomposition in cold, anoxic lake bottoms. When lakes eventually drained, permafrost formation rapidly sequestered sediment carbon. Our estimate of about 160 petagrams of Holocene organic carbon in deep lake basins of Siberia and Alaska increases the circumpolar peat carbon pool estimate for permafrost regions by over 50 per cent (ref. 6). The carbon in perennially frozen drained lake sediments may become vulnerable to mineralization as permafrost disappears(7-9), potentially negating the climate stabilization provided by thermokarst lakes during the late Holocene.
引用
收藏
页码:452 / +
页数:18
相关论文
共 75 条
  • [61] Speleothems Reveal 500,000-Year History of Siberian Permafrost
    Vaks, A.
    Gutareva, O. S.
    Breitenbach, S. F. M.
    Avirmed, E.
    Mason, A. J.
    Thomas, A. L.
    Osinzev, A. V.
    Kononov, A. M.
    Henderson, G. M.
    [J]. SCIENCE, 2013, 340 (6129) : 183 - 186
  • [62] Vasil'cuk Y. K., 1992, OXYGEN ISOTOPE COMPO, V1
  • [63] Vasil'cuk Y. K., 1992, OXYGEN ISOTOPE COMPO, V2
  • [64] Modern Tundra Landscapes of the Kolyma Lowland and their Evolution in the Holocene
    Veremeeva, Alexandra
    Gubin, Stanislav
    [J]. PERMAFROST AND PERIGLACIAL PROCESSES, 2009, 20 (04) : 399 - 406
  • [65] Vtyurin B. I., 1975, UNDERGROUND ICES USS, P1
  • [66] Walker DA, 2005, J VEG SCI, V16, P267, DOI 10.1111/j.1654-1103.2005.tb02365.x
  • [67] LOESS ECOSYSTEMS OF NORTHERN ALASKA - REGIONAL GRADIENT AND TOPOSEQUENCE AT PRUDHOE BAY
    WALKER, DA
    EVERETT, KR
    [J]. ECOLOGICAL MONOGRAPHS, 1991, 61 (04) : 437 - 464
  • [68] Walter Anthony K. M., 2013, J GEOPHYS RES, V118
  • [69] Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation
    Walter, K. M.
    Edwards, M. E.
    Grosse, G.
    Zimov, S. A.
    Chapin, F. S., III
    [J]. SCIENCE, 2007, 318 (5850) : 633 - 636
  • [70] Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming
    Walter, K. M.
    Zimov, S. A.
    Chanton, J. P.
    Verbyla, D.
    Chapin, F. S., III
    [J]. NATURE, 2006, 443 (7107) : 71 - 75