Parametric excitation of breathers in a nonlinear lattice

被引:3
作者
Abel, M
Pikovsky, A
机构
[1] Inst. Theor. Phys. and Astrophys., University of Potsdam
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 1997年 / 52卷 / 8-9期
关键词
D O I
10.1515/zna-1997-8-902
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigate localized periodic solutions (breathers) in a lattice of parametrically driven, nonlinear dissipative oscillators. These breathers are demonstrated to be exponentially localized, with two characteristic localization lengths. The crossover between the two lengths is shown to be related to the transition in the phase of the lattice oscillations.
引用
收藏
页码:570 / 572
页数:3
相关论文
共 7 条
[1]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[2]  
BOGOLUBOV NN, 1965, ASYMPTOTISCHE METHOD
[3]   CONDITIONS ON THE EXISTENCE OF LOCALIZED EXCITATIONS IN NONLINEAR DISCRETE-SYSTEMS [J].
FLACH, S .
PHYSICAL REVIEW E, 1994, 50 (04) :3134-3142
[4]  
LVOV VS, 1991, WAVE TURBULENCE PERI
[5]   PROOF OF EXISTENCE OF BREATHERS FOR TIME-REVERSIBLE OR HAMILTONIAN NETWORKS OF WEAKLY COUPLED OSCILLATORS [J].
MACKAY, RS ;
AUBRY, S .
NONLINEARITY, 1994, 7 (06) :1623-1643
[6]   LOW-AMPLITUDE BREATHER AND ENVELOPE SOLITONS IN QUASI-ONE-DIMENSIONAL PHYSICAL MODELS [J].
REMOISSENET, M .
PHYSICAL REVIEW B, 1986, 33 (04) :2386-2392
[7]  
TAKENO S, 1988, PROG THEOR PHYS SUPP, V94, P242