Do bonds span the fixed income markets? Theory and evidence for unspanned stochastic volatility

被引:127
作者
Collin-Dufresne, P [1 ]
Goldstein, RS
机构
[1] Carnegie Mellon Univ, Grad Sch Ind Adm, Pittsburgh, PA 15213 USA
[2] Washington Univ, St Louis, MO 63130 USA
关键词
D O I
10.1111/1540-6261.00475
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Most term structure models assume bond markets are complete, that is, that all fixed income derivatives can be perfectly replicated using solely bonds. However, we find that, in practice, swap rates have limited explanatory power for returns on at-the-money straddles-portfolios mainly exposed to volatility risk. We term this empirical feature "unspanned stochastic volatility" (USV). While USV can be captured within an HJM framework, we demonstrate that bivariate models cannot exhibit USV We determine necessary and sufficient conditions for trivariate Markov affine systems to exhibit USV For such USV models, bonds alone may not be sufficient to identify all parameters. Rather, derivatives are needed.
引用
收藏
页码:1685 / 1730
页数:46
相关论文
共 53 条
[21]   Transform analysis and asset pricing for affine jump-diffusions [J].
Duffie, D ;
Pan, J ;
Singleton, K .
ECONOMETRICA, 2000, 68 (06) :1343-1376
[22]   An econometric model of the term structure of interest-rate swap yields [J].
Duffie, D ;
Singleton, KJ .
JOURNAL OF FINANCE, 1997, 52 (04) :1287-1321
[23]   Modeling term structures of defaultable bonds [J].
Duffie, D ;
Singleton, KJ .
REVIEW OF FINANCIAL STUDIES, 1999, 12 (04) :687-720
[24]  
Duffie D., 1996, MATH FINANC, V6, P379
[25]  
Duffie D, 2001, DYNAMIC ASSET PRICIN
[26]  
DUFFIE D, 2001, AFFINE PROCESSES APP
[27]  
Dybvig P. H., 1997, MATH DERIVATIVE SECU
[28]  
FAN R, 2001, PERFORMANCE MULTIFAC
[29]   2 SINGULAR DIFFUSION PROBLEMS [J].
FELLER, W .
ANNALS OF MATHEMATICS, 1951, 54 (01) :173-182
[30]  
Fong H. G., 1991, J PORTFOLIO MANA SUM, P41