Amperometric glucose biosensor based on adsorption of glucose oxidase at platinum nanoparticle-modified carbon nanotube electrode

被引:262
作者
Tang, H
Chen, JH [1 ]
Yao, SZ
Nie, LH
Deng, GH
Kuang, YF
机构
[1] Hunan Univ, State Key Lab Chem Biosensing & Chemometr, Changsha 410082, Peoples R China
[2] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Peoples R China
关键词
carbon nanotubes; platinum nanoparticle; Nafion; glucose oxidase; biosensor;
D O I
10.1016/j.ab.2004.05.005
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A new amperometric biosensor, based on adsorption of glucose oxidase (GOD) at the platinum nanoparticle-modified carbon nanotube (CNT) electrode, is presented in this article. CNTs were grown directly on the graphite substrate. The resulting GOD/Pt/CNT electrode was covered by a thin layer of Nafion to avoid the loss of GOD in determination and to improve the anti-interferent ability. The morphologies and electrochemical performance of the CNT, Pt/CNT, and Nafion/GOD/Pt/CNT electrodes have been investigated by scanning electron microscopy, cyclic voltammetry, and amperometric methods. The excellent electrocatalytic activity and special three-dimensional structure of the enzyme electrode result in good characteristics such as a large determination range (0.1-13.5 mM), a short response time (within 5 s), a large current density (1.176mA cm(-2)), and high sensitivity (91 mA M-1 cm(-2)) and stability (73.5% remains after 22 days). In addition, effects of pH value, applied potential, electrode construction, and electroactive interferents on the amperometric response of the sensor were investigated and discussed. The reproducibility and applicability to whole blood analysis of the enzyme electrode were also evaluated. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:89 / 97
页数:9
相关论文
共 39 条
[1]   ELECTROCHEMICAL IMMOBILIZATION OF ENZYMES .5. MICROELECTRODES FOR THE DETECTION OF GLUCOSE BASED ON GLUCOSE-OXIDASE IMMOBILIZED IN A POLY(PHENOL) FILM [J].
BARTLETT, PN ;
CARUANA, DJ .
ANALYST, 1992, 117 (08) :1287-1292
[2]   Carbon nanotube actuators [J].
Baughman, RH ;
Cui, CX ;
Zakhidov, AA ;
Iqbal, Z ;
Barisci, JN ;
Spinks, GM ;
Wallace, GG ;
Mazzoldi, A ;
De Rossi, D ;
Rinzler, AG ;
Jaschinski, O ;
Roth, S ;
Kertesz, M .
SCIENCE, 1999, 284 (5418) :1340-1344
[3]   Carbon nanotubes - the route toward applications [J].
Baughman, RH ;
Zakhidov, AA ;
de Heer, WA .
SCIENCE, 2002, 297 (5582) :787-792
[4]   Carbon nanotube electrode for oxidation of dopamine [J].
Britto, PJ ;
Santhanam, KSV ;
Ajayan, PM .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1996, 41 (01) :121-125
[5]   Carbon nanotubule membranes for electrochemical energy storage and production [J].
Che, GL ;
Lakshmi, BB ;
Fisher, ER ;
Martin, CR .
NATURE, 1998, 393 (6683) :346-349
[6]   Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species [J].
Cui, Y ;
Wei, QQ ;
Park, HK ;
Lieber, CM .
SCIENCE, 2001, 293 (5533) :1289-1292
[7]   Protein electrochemistry at carbon nanotube electrodes [J].
Davis, JJ ;
Coles, RJ ;
Hill, HAO .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1997, 440 (1-2) :279-282
[8]   Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites [J].
Eitan, A ;
Jiang, KY ;
Dukes, D ;
Andrews, R ;
Schadler, LS .
CHEMISTRY OF MATERIALS, 2003, 15 (16) :3198-3201
[9]   Self-oriented regular arrays of carbon nanotubes and their field emission properties [J].
Fan, SS ;
Chapline, MG ;
Franklin, NR ;
Tombler, TW ;
Cassell, AM ;
Dai, HJ .
SCIENCE, 1999, 283 (5401) :512-514
[10]   PERMEABILITY OF GLUCOSE AND OTHER NEUTRAL SPECIES THROUGH RECAST PERFLUOROSULFONATED IONOMER FILMS [J].
FAN, ZH ;
HARRISON, DJ .
ANALYTICAL CHEMISTRY, 1992, 64 (11) :1304-1311