Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs

被引:90
作者
Jones, Rebecca M. [1 ]
Sharma, Anuj [1 ]
Hotchkiss, Robert [2 ]
Sperling, John W. [3 ]
Hamburger, Jackson [1 ]
Ledig, Christian [1 ]
O'Toole, Robert [4 ]
Gardner, Michael [5 ]
Venkatesh, Srivas [1 ]
Roberts, Matthew M. [2 ]
Sauvestre, Romain [1 ]
Shatkhin, Max [1 ]
Gupta, Anant [1 ]
Chopra, Sumit [1 ]
Kumaravel, Manickam [6 ]
Daluiski, Aaron [2 ]
Plogger, Will [1 ]
Nascone, Jason [7 ]
Potter, Hollis G. [2 ]
Lindsey, Robert, V [1 ]
机构
[1] Imagen Technol Inc, 151 West 26th St,Suite 1001, New York, NY 10001 USA
[2] Hosp Special Surg, 523 East 72nd St, New York, NY 10021 USA
[3] Mayo Clin, 200 1st St SW, Rochester, MN 55905 USA
[4] Univ Maryland Med Syst, R Adams Cowley Shock Trauma Ctr, 22 South Greene St, Baltimore, MD 21201 USA
[5] Stanford Univ, 450 Broadway St, Redwood City, CA 94063 USA
[6] Univ Texas Houston, Med Sch Houston, 6431 Fannin St, Houston, TX 77030 USA
[7] Univ Maryland Med Syst, 22 South Greene St, Baltimore, MD 21201 USA
关键词
RADIOLOGY;
D O I
10.1038/s41746-020-00352-w
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Missed fractures are the most common diagnostic error in emergency departments and can lead to treatment delays and long-term disability. Here we show through a multi-site study that a deep-learning system can accurately identify fractures throughout the adult musculoskeletal system. This approach may have the potential to reduce future diagnostic errors in radiograph interpretation.
引用
收藏
页数:6
相关论文
共 28 条
[1]  
Anglen J, 1997, ORTHOPEDICS, V20, P1015
[2]   Deep learning predicts hip fracture using confounding patient and healthcare variables [J].
Badgeley, Marcus A. ;
Zech, John R. ;
Oakden-Rayner, Luke ;
Glicksberg, Benjamin S. ;
Liu, Manway ;
Gale, William ;
McConnell, Michael, V ;
Percha, Bethany ;
Snyder, Thomas M. ;
Dudley, Joel T. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[3]   Malpractice issues in radiology - Defending the "missed" radiographic diagnosis [J].
Berlin, L .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2001, 176 (02) :317-322
[4]   MEDICAL COST-CONTAINMENT - ANALYSIS OF DUAL ORTHOPEDIC RADIOLOGY INTERPRETATION OF X-RAYS IN THE TRAUMA PATIENT [J].
BOSSE, MJ ;
BRUMBACK, RJ ;
HASH, C .
JOURNAL OF TRAUMA-INJURY INFECTION AND CRITICAL CARE, 1995, 38 (02) :220-222
[5]   Automated detection and classification of the proximal humerus fracture by using deep learning algorithm [J].
Chung, Seok Won ;
Han, Seung Seog ;
Lee, Ji Whan ;
Oh, Kyung-Soo ;
Kim, Na Ra ;
Yoon, Jong Pil ;
Kim, Joon Yub ;
Moon, Sung Hoon ;
Kwon, Jieun ;
Lee, Hyo-Jin ;
Noh, Young-Min ;
Kim, Youngjun .
ACTA ORTHOPAEDICA, 2018, 89 (04) :468-473
[6]   Common patterns in 558 diagnostic radiology errors [J].
Donald, Jennifer J. ;
Barnard, Stuart A. .
JOURNAL OF MEDICAL IMAGING AND RADIATION ONCOLOGY, 2012, 56 (02) :173-178
[7]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[8]   Diagnostic errors in an accident and emergency department [J].
Guly, HR .
EMERGENCY MEDICINE JOURNAL, 2001, 18 (04) :263-269
[9]   Errors in fracture diagnoses in the emergency deparment - Characteristics of patients and diurnal variation [J].
Hallas P. ;
Ellingsen T. .
BMC Emergency Medicine, 6 (1)
[10]   Co-teaching: Robust Training of Deep Neural Networks with Extremely Noisy Labels [J].
Han, Bo ;
Yao, Quanming ;
Yu, Xingrui ;
Niu, Gang ;
Xu, Miao ;
Hu, Weihua ;
Tsang, Ivor W. ;
Sugiyama, Masashi .
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31