Automated detection and classification of the proximal humerus fracture by using deep learning algorithm

被引:313
作者
Chung, Seok Won [1 ]
Han, Seung Seog [3 ]
Lee, Ji Whan [1 ]
Oh, Kyung-Soo [1 ]
Kim, Na Ra [2 ]
Yoon, Jong Pil [4 ]
Kim, Joon Yub [5 ]
Moon, Sung Hoon [6 ]
Kwon, Jieun [7 ]
Lee, Hyo-Jin [8 ,9 ]
Noh, Young-Min [10 ]
Kim, Youngjun [11 ]
机构
[1] Konkuk Univ, Sch Med, Dept Orthopaed Surg, Seoul, South Korea
[2] Konkuk Univ, Sch Med, Dept Radiol, Seoul, South Korea
[3] I Dermatol Clin, Dept Dermatol, Seoul, South Korea
[4] Kyungpook Natl Univ, Coll Med, Dept Orthopaed Surg, Daegu, South Korea
[5] Myungji Hosp, Dept Orthopaed Surg, Goyang, South Korea
[6] Kangwon Natl Univ, Coll Med, Dept Orthopaed Surg, Chunchon, South Korea
[7] Natl Police Hosp, Dept Othopaed Surg, Seoul, South Korea
[8] Catholic Univ, Coll Med, Dept Orthopaed Surg, Seoul, South Korea
[9] St Marys Hosp, Seoul, South Korea
[10] Dong A Univ, Coll Med, Dept Orthopaed Surg, Pusan, South Korea
[11] Korea Inst Sci & Technol, Ctr Bion, Seoul, South Korea
关键词
D O I
10.1080/17453674.2018.1453714
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background and purpose - We aimed to evaluate the ability of artificial intelligence (a deep learning algorithm) to detect and classify proximal humerus fractures using plain anteroposterior shoulder radiographs. Patients and methods - 1,891 images (1 image per person) of normal shoulders (n = 515) and 4 proximal humerus fracture types (greater tuberosity, 346; surgical neck, 514; 3-part, 269; 4-part, 247) classified by 3 specialists were evaluated. We trained a deep convolutional neural network (CNN) after augmentation of a training dataset. The ability of the CNN, as measured by top-1 accuracy, area under receiver operating characteristics curve (AUC), sensitivity/specificity, and Youden index, in comparison with humans (28 general physicians, 11 general orthopedists, and 19 orthopedists specialized in the shoulder) to detect and classify proximal humerus fractures was evaluated. Results - The CNN showed a high performance of 96% top-1 accuracy, 1.00 AUC, 0.99/0.97 sensitivity/specificity, and 0.97 Youden index for distinguishing normal shoulders from proximal humerus fractures. In addition, the CNN showed promising results with 65-86% top-1 accuracy, 0.90-0.98 AUC, 0.88/0.83-0.97/0.94 sensitivity/specificity, and 0.71-0.90 Youden index for classifying fracture type. When compared with the human groups, the CNN showed superior performance to that of general physicians and orthopedists, similar performance to orthopedists specialized in the shoulder, and the superior performance of the CNN was more marked in complex 3- and 4-part fractures. Interpretation - The use of artificial intelligence can accurately detect and classify proximal humerus fractures on plain shoulder AP radiographs. Further studies are necessary to determine the feasibility of applying artificial intelligence in the clinic and whether its use could improve care and outcomes compared with current orthopedic assessments.
引用
收藏
页码:468 / 473
页数:6
相关论文
共 14 条
[1]   Representation Learning: A Review and New Perspectives [J].
Bengio, Yoshua ;
Courville, Aaron ;
Vincent, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1798-1828
[2]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[3]   Classification and treatment of proximal humerus fractures: inter-observer reliability and agreement across imaging modalities and experience [J].
Foroohar, Abtin ;
Tosti, Rick ;
Richmond, John M. ;
Gaughan, John P. ;
Ilyas, Asif M. .
JOURNAL OF ORTHOPAEDIC SURGERY AND RESEARCH, 2011, 6
[4]   Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs [J].
Gulshan, Varun ;
Peng, Lily ;
Coram, Marc ;
Stumpe, Martin C. ;
Wu, Derek ;
Narayanaswamy, Arunachalam ;
Venugopalan, Subhashini ;
Widner, Kasumi ;
Madams, Tom ;
Cuadros, Jorge ;
Kim, Ramasamy ;
Raman, Rajiv ;
Nelson, Philip C. ;
Mega, Jessica L. ;
Webster, R. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2016, 316 (22) :2402-2410
[5]   Computer-aided classification of lung nodules on computed tomography images via deep learning technique [J].
Hua, Kai-Lung ;
Hsu, Che-Hao ;
Hidayati, Hintami Chusnul ;
Cheng, Wen-Huang ;
Chen, Yu-Jen .
ONCOTARGETS AND THERAPY, 2015, 8 :2015-2022
[6]   Large scale deep learning for computer aided detection of mammographic lesions [J].
Kooi, Thijs ;
Litjens, Geert ;
van Ginneken, Bram ;
Gubern-Merida, Albert ;
Sancheza, Clara I. ;
Mann, Ritse ;
den Heeten, Ard ;
Karssemeijer, Nico .
MEDICAL IMAGE ANALYSIS, 2017, 35 :303-312
[7]   Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks [J].
Lakhani, Paras ;
Sundaram, Baskaran .
RADIOLOGY, 2017, 284 (02) :574-582
[8]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[9]   Updated Classification System for Proximal Humeral Fractures [J].
Mora Guix, Jose ;
Sala Pedros, Juan ;
Castano Serrano, Alejandro .
CLINICAL MEDICINE & RESEARCH, 2009, 7 (1-2) :32-44