Activity-dependent NMDA receptor-mediated activation of protein kinase B/Akt in cortical neuronal cultures

被引:102
作者
Sutton, G [1 ]
Chandler, LJ [1 ]
机构
[1] Med Univ S Carolina, Dept Physiol & Neurosci, Charleston, SC 29425 USA
关键词
brain-derived neurotrophic factor; extracellular-signal regulated kinase; NMDA; PI3K; protein kinase B; Ras;
D O I
10.1046/j.1471-4159.2002.01031.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The serine/threonine protein kinase B (PKB)/Akt is a phosphoinositide 3-kinase (PI3K) effector that is thought to play an important roll in a wide variety of cellular events. The present study examined whether PKB activation in cortical neuronal cultures is coupled with synaptic activity. A 1-h incubation of neuronal cultures with tetrodotoxin (TTX), the PI3K inhibitor wortmannin, the NMDA receptor antagonist MK-801 or removal of extracellular calcium significantly reduced basal levels of phospho(Ser473)-PKB, indicating that activity-dependent glutamate release maintains PKB activation through an NMDA receptor-PI3K pathway. A 5-min exposure to NMDA (50 muM) in the presence of TTX increased phospho-PKB back to levels observed in the absence of TTX. NMDA stimulation of phospho-PKB was blocked by wortmannin, the CaMKII inhibitor KN-93, MK-801, and removal of extracellular calcium. We have previously shown that NMDA receptors can bi-directionally regulate activation of extracellular-signal regulated kinase (ERK), and NMDA receptor stimulation of PKB in the present study appeared to mirror activation of ERK. These results suggest that in cultured cortical neurons, PKB activity is dynamically regulated by synaptic activity and is coupled to NMDA receptor activation. In addition, NMDA receptor activation of ERK and PKB may occur through overlapping signaling pathways that bifurcate at the level of Ras.
引用
收藏
页码:1097 / 1105
页数:9
相关论文
共 45 条
[1]   Molecular psychology: Roles for the ERK MAP kinase cascade in memory [J].
Adams, JP ;
Sweatt, JD .
ANNUAL REVIEW OF PHARMACOLOGY AND TOXICOLOGY, 2002, 42 :135-163
[2]  
Allen C, 1998, LINGUA FRANCA, V8, P62
[3]   Activity-dependent release of endogenous brain-derived neurotrophic factor from primary sensory neurons detected by ELISA in situ [J].
Balkowiec, A ;
Katz, DM .
JOURNAL OF NEUROSCIENCE, 2000, 20 (19) :7417-7423
[4]   Protein kinase B/akt and Rab5 mediate ras activation of endocytosis [J].
Barbieri, MA ;
Kohn, AD ;
Roth, RA ;
Stahl, PD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (31) :19367-19370
[5]   A RETROVIRAL ONCOGENE, AKT, ENCODING A SERINE-THREONINE KINASE CONTAINING AN SH2-LIKE REGION [J].
BELLACOSA, A ;
TESTA, JR ;
STAAL, SP ;
TSICHLIS, PN .
SCIENCE, 1991, 254 (5029) :274-277
[6]   Brain-derived neurotrophic factor mediates the anti-apoptotic effect of NMDA in cerebellar granule neurons: Signal transduction cascades and site of ethanol action [J].
Bhave, SV ;
Ghoda, L ;
Hoffman, PL .
JOURNAL OF NEUROSCIENCE, 1999, 19 (09) :3277-3286
[7]  
Blair LAC, 1999, J NEUROSCI, V19, P1940
[8]   Ten years of protein kinase B signalling: a hard Akt to follow [J].
Brazil, DP ;
Hemmings, BA .
TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (11) :657-664
[9]   Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway [J].
Brunet, A ;
Datta, SR ;
Greenberg, ME .
CURRENT OPINION IN NEUROBIOLOGY, 2001, 11 (03) :297-305
[10]   Increasing complexity of Ras signaling [J].
Campbell, SL ;
Khosravi-Far, R ;
Rossman, KL ;
Clark, GJ ;
Der, CJ .
ONCOGENE, 1998, 17 (11) :1395-1413