Scalable Solution-Grown High-Germanium-Nanoparticle-Loading Graphene Nanocomposites as High-Performance Lithium-Ion Battery Electrodes: An Example of a Graphene-Based Platform toward Practical Full-Cell Applications

被引:131
作者
Yuan, Fang-Wei [1 ]
Tuan, Hsing-Yu [1 ]
机构
[1] Natl Tsing Hua Univ, Dept Chem Engn, Hsinchu 30013, Taiwan
关键词
LONG CYCLE LIFE; ANODE MATERIALS; HIGH-CAPACITY; HYBRID NANOSHEETS; FACILE SYNTHESIS; COMPOSITE ANODE; GE NANOWIRES; NANOCRYSTALS; STORAGE; SILICON;
D O I
10.1021/cm5002016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Graphene in the form of graphene/nanocrystal nanocomposites can improve the electrochemical performance of nanocrystals for lithium-ion (Li-ion) battery anodes, which is especially important for high-capacity Li-alloy materials such as Si and Ge. For practical full-cell applications, graphene composite electrodes consisting of a large portion of active materials (i.e., a surface of graphene sheets evenly distributed with dense nanoparticles) are required. We have developed a facile solution-based method to synthesize subgram quantities of nanocomposites composed of reduced graphene oxide (RGO) sheets covered with a high concentration (similar to 80 wt %) of single-crystal 4.90(+/- 0.80) nm diameter Ge nanoparticles. Subsequently, carbon-coated Ge nanoparticles/RGO (Ge/RGO/C) sandwich structures were formed via a carbonization process. The high-nanoparticle-loading nanocomposites exhibited superior Li-ion battery anode performance when examined with a series of comprehensive tests, such as receiving a practical capacity of Ge (1332 mAh/g) close (96.2%) to its theoretical value (1384 mAh/g) when cycled at a 0.2 C rate and having a high-rate capability over hundreds of cycles. Furthermore, the performance of the full cells assembled using a Ge/RGO/C anode and an LiCoO2 cathode were evaluated. The cells were able to power a wide range of electronic devices, including an light-emitting-diode (LED) array consisting of over 150 bulbs, blue LED arrays, a scrolling LED marquee, and an electric fan. Thus, this study demonstrates a proof of concept of the use of graphene-based nanocomposites toward practical Li-ion battery applications.
引用
收藏
页码:2172 / 2179
页数:8
相关论文
共 62 条
[11]   Germanium sulfide(II and IV) nanoparticles for enhanced performance of lithium ion batteries [J].
Cho, Yong Jae ;
Im, Hyung Soon ;
Myung, Yoon ;
Kim, Chang Hyun ;
Kim, Han Sung ;
Back, Seung Hyuk ;
Lim, Young Rok ;
Jung, Chan Su ;
Jang, Dong Myung ;
Park, Jeunghee ;
Cha, Eun Hee ;
Choo, Sung Ho ;
Song, Min Seob ;
Cho, Won Il .
CHEMICAL COMMUNICATIONS, 2013, 49 (41) :4661-4663
[12]   Solution-Grown Germanium Nanowire Anodes for Lithium-Ion Batteries [J].
Chockla, Aaron M. ;
Klavetter, Kyle C. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
ACS APPLIED MATERIALS & INTERFACES, 2012, 4 (09) :4658-4664
[13]   Electrochemical Lithiation of Graphene-Supported Silicon and Germanium for Rechargeable Batteries [J].
Chockla, Aaron M. ;
Panthani, Matthew G. ;
Holmberg, Vincent C. ;
Hessel, Colin M. ;
Reid, Dariya K. ;
Bogart, Timothy D. ;
Harris, Justin T. ;
Mullins, C. Buddie ;
Korgel, Brian A. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (22) :11917-11923
[14]   A novel germanium/carbon nanotubes nanocomposite for lithium storage material [J].
Cui, Guanglei ;
Gu, Lin ;
Kaskhedikar, Nitin ;
van Aken, Peter A. ;
Maier, Joachim .
ELECTROCHIMICA ACTA, 2010, 55 (03) :985-988
[15]   A Germanium-Carbon Nanocomposite Material for Lithium Batteries [J].
Cui, Guanglei ;
Gu, Lin ;
Zhi, Linjie ;
Kaskhedikar, N. ;
van Aken, Peter A. ;
Muellen, Klaus ;
Maier, Joachim .
ADVANCED MATERIALS, 2008, 20 (16) :3079-3083
[16]   Silicon and Germanium Nanoparticles with Tailored Surface Chemistry as Novel Inorganic Fiber Brightening Agents [J].
Deb-Choudhury, Santanu ;
Prabakar, Sujay ;
Krsinic, Gail ;
Dyer, Jolon M. ;
Tilley, Richard D. .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2013, 61 (30) :7188-7194
[17]   Sandwich-Stacked SnO2/Cu Hybrid Nanosheets as Multichannel Anodes for Lithium Ion Batteries [J].
Deng, Junwen ;
Yan, Chenglin ;
Yang, Lichun ;
Baunack, Stefan ;
Oswald, Steffen ;
Wendrock, Horst ;
Mei, Yongfeng ;
Schmidt, Oliver G. .
ACS NANO, 2013, 7 (08) :6948-6954
[18]   Hybrid Germanium Nanoparticle-Single-Wall Carbon Nanotube Free-Standing Anodes for Lithium Ion Batteries [J].
DiLeo, Roberta A. ;
Frisco, Sarah ;
Ganter, Matthew J. ;
Rogers, Reginald E. ;
Raffaelle, Ryne P. ;
Landi, Brian J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (45) :22609-22614
[19]   Solution phase synthesis of silicon and germanium nanowires [J].
Geaney, Hugh ;
Mullane, Emma ;
Ryan, Kevin M. .
JOURNAL OF MATERIALS CHEMISTRY C, 2013, 1 (33) :4996-5007
[20]   Functionalization of Graphene: Covalent and Non-Covalent Approaches, Derivatives and Applications [J].
Georgakilas, Vasilios ;
Otyepka, Michal ;
Bourlinos, Athanasios B. ;
Chandra, Vimlesh ;
Kim, Namdong ;
Kemp, K. Christian ;
Hobza, Pavel ;
Zboril, Radek ;
Kim, Kwang S. .
CHEMICAL REVIEWS, 2012, 112 (11) :6156-6214