Automation of nanoscale microcapillary liquid chromatography-tandem mass spectromentry with a vented column

被引:179
作者
Licklider, LJ
Thoreen, CC
Peng, JM
Gygi, SP
机构
[1] Harvard Univ, Sch Med, Taplin Biol Mass Spectrometry Facil, Boston, MA 02115 USA
[2] Harvard Univ, Sch Med, Dept Cell Biol, Boston, MA 02115 USA
关键词
D O I
10.1021/ac025529o
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
To fully automate the sample introduction step for nano-scale microcapillary liquid chromatography-tandem mass spectrometry (LC-MS/MS) analyses, 75 mum W. x 14 cm capillary columns were interfaced with a commercial autosampler instrument using a novel procedure which allowed dilute peptide samples to be transferred from the AS loop injector to the nanoscale column at flow rates up to 5 muL min(-1). On-column enrichment and desalting was demonstrated for large sample volumes (>40 muL) by constructing a vent 2 cm after the entrance to the packed bed of 5-mum ODS-AQ modified silica. Salts and nonretained solutes were removed via the vent, which allowed for column washing independent of the continuation of the bed into the electrospray source. Separations of test peptide mixtures demonstrated 50-nL elution peak volumes with low- to subfemtomole detection levels. In addition, a highly complex peptide mixture (outer membrane preparation from Psuedemonas aeruginosa) was efficiently separated with more than 100 proteins identified from a single reversed-phase LC-MS/MS analysis. Finally, the vented column (V-column) was utilized for online separations in a multidimensional chromatography/tandem MS experiment where large numbers of strong cation exchange chromatography fractions from a trypsinized yeast lysate were desalted, concentrated, and analyzed in a completely automated fashion. The procedures for constructing and using a V-column require minimal changes in current methods and equipment for nano-LC-MS analyses using columns of 100-mum diameter and smaller.
引用
收藏
页码:3076 / 3083
页数:8
相关论文
共 25 条
[1]   Mass spectrometry in proteomics [J].
Aebersold, R ;
Goodlett, DR .
CHEMICAL REVIEWS, 2001, 101 (02) :269-295
[2]   A MICROSCALE ELECTROSPRAY INTERFACE FOR ONLINE, CAPILLARY LIQUID-CHROMATOGRAPHY TANDEM MASS-SPECTROMETRY OF COMPLEX PEPTIDE MIXTURES [J].
DAVIS, MT ;
STAHL, DC ;
HEFTA, SA ;
LEE, TD .
ANALYTICAL CHEMISTRY, 1995, 67 (24) :4549-4556
[3]  
Devreese B, 2001, RAPID COMMUN MASS SP, V15, P50, DOI 10.1002/1097-0231(20010115)15:1<50::AID-RCM191>3.0.CO
[4]  
2-V
[5]   High throughput protein characterization by automated reverse-phase chromatography electrospray tandem mass spectrometry [J].
Ducret, A ;
Van Oostveen, I ;
Eng, JK ;
Yates, JR ;
Aebersold, R .
PROTEIN SCIENCE, 1998, 7 (03) :706-719
[6]   Application of micro-electrospray liquid chromatography techniques to FT-ICR MS to enable high-sensitivity biological analysis [J].
Emmett, MR ;
White, FM ;
Hendrickson, CL ;
Shi, SDH ;
Marshall, AG .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1998, 9 (04) :333-340
[7]   AN APPROACH TO CORRELATE TANDEM MASS-SPECTRAL DATA OF PEPTIDES WITH AMINO-ACID-SEQUENCES IN A PROTEIN DATABASE [J].
ENG, JK ;
MCCORMACK, AL ;
YATES, JR .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 1994, 5 (11) :976-989
[8]   Protein identification at the low femtomole level from silver-stained gels using a new fritless electrospray interface for liquid chromatography microspray and nanospray mass spectrometry [J].
Gatlin, CL ;
Kleemann, GR ;
Hays, LG ;
Link, AJ ;
Yates, JR .
ANALYTICAL BIOCHEMISTRY, 1998, 263 (01) :93-101
[9]   Correlation between protein and mRNA abundance in yeast [J].
Gygi, SP ;
Rochon, Y ;
Franza, BR ;
Aebersold, R .
MOLECULAR AND CELLULAR BIOLOGY, 1999, 19 (03) :1720-1730
[10]   Evaluation of two-dimensional gel electrophoresis-based proteome analysis technology [J].
Gygi, SP ;
Corthals, GL ;
Zhang, Y ;
Rochon, Y ;
Aebersold, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (17) :9390-9395