The LXXLL motif of murine forkhead transcription factor FoxO1 mediates Sirt1-dependent transcriptional activity

被引:107
作者
Nakae, Jun
Cao, Yongheng
Daitoku, Hiroaki
Fukamizu, Akiyoshi
Ogawa, Wataru
Yano, Yoshihiko
Hayashi, Yoshitake
机构
[1] Kobe Univ, Dept Clin Mol Med, Div Diabet Digest & Kidney Dis, Grad Sch Med,Chuo Ku, Kobe, Hyogo 6500017, Japan
[2] Univ Tsukuba, Ctr Tsukuba Adv Res Alliance, Tsukuba, Ibaraki 305, Japan
[3] Kobe Univ, Div Mol Med & Med Genet, Int Ctr Med Res & Treatment, Grad Sch Med, Kobe, Hyogo 657, Japan
关键词
D O I
10.1172/JCI25518
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
The forkhead transcription factor FoxO1 has been identified as a negative regulator of insulin/IGF-1 signaling. Its function is inhibited by phosphorylation and nuclear exclusion through a PI3K-dependent pathway. However, the structure/function relationship of FoxO1 has not been elucidated completely. In this study, we carried out mutation analysis of the FoxO1 coactivator-interacting LXXLL motif (amino acids 459-463). Expression of a 3A/LXXAA mutant, in which 3 Akt phosphorylation sites (T24, S253, and S316) and 2 leucine residues in the LXXLL motif (L462 and L463) were replaced by alanine, decreased both Igfbp-1 and G6Pase promoter activity and endogenous Igfbp-1 and G6Pase gene expression in simian virus 40-transformed (SV40-transformed) hepatocytes. Importantly, mutagenesis of the LXXLL motif eliminated FoxO1 interaction with the nicotinamide adenine dinucleotide-dependent (NAD-dependent) deacetylase sirtuin 1(Sirt1), sustained the acetylated state of FoxO1, and made FoxO1 nicotinamide and resveratrol insensitive, supporting a role for this motif in Sirt1 binding. Furthermore, intravenous administration of adenovirus encoding 3A/LXXAA FoxO1 into Lepr(db/db) mice decreased fasting blood glucose levels and improved glucose tolerance and was accompanied by reduced G6Pase and Igfbp-1 gene expression and increased hepatic glycogen content. In conclusion, the LXXLL motif of FoxO1 may have an important role for its transcriptional activity and Sirt1 binding and should be a target site for regulation of gene expression of FoxO1 target genes and glucose metabolism in vivo.
引用
收藏
页码:2473 / 2483
页数:11
相关论文
共 52 条
  • [1] FoxOs at the crossroads of cellular metabolism, differentiation, and transformation
    Accili, D
    Arden, KC
    [J]. CELL, 2004, 117 (04) : 421 - 426
  • [2] Inhibition of Foxo1 function is associated with improved fasting glycemia in diabetic mice
    Altomonte, J
    Richter, A
    Harbaran, S
    Suriawinata, J
    Nakae, J
    Thung, SN
    Meseck, M
    Accili, D
    Dong, HJ
    [J]. AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 285 (04): : E718 - E728
  • [3] Foxo1 mediates insulin action on apoC-III and triglyceride metabolism
    Altomonte, J
    Cong, L
    Harbaran, S
    Richter, A
    Xu, J
    Meseck, M
    Dong, HJH
    [J]. JOURNAL OF CLINICAL INVESTIGATION, 2004, 114 (10) : 1493 - 1503
  • [4] C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span
    Berdichevsky, Ala
    Viswanathan, Mohan
    Horvitz, H. Robert
    Guarente, Leonard
    [J]. CELL, 2006, 125 (06) : 1165 - 1177
  • [5] Mechanism of human SIRT1 activation by resveratrol
    Borra, MT
    Smith, BC
    Denu, JM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (17) : 17187 - 17195
  • [6] Akt promotes cell survival by phosphorylating and inhibiting a forkhead transcription factor
    Brunet, A
    Bonni, A
    Zigmond, MJ
    Lin, MZ
    Juo, P
    Hu, LS
    Anderson, MJ
    Arden, KC
    Blenis, J
    Greenberg, ME
    [J]. CELL, 1999, 96 (06) : 857 - 868
  • [7] Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
    Brunet, A
    Sweeney, LB
    Sturgill, JF
    Chua, KF
    Greer, PL
    Lin, YX
    Tran, H
    Ross, SE
    Mostoslavsky, R
    Cohen, HY
    Hu, LS
    Cheng, HL
    Jedrychowski, MP
    Gygi, SP
    Sinclair, DA
    Alt, FW
    Greenberg, ME
    [J]. SCIENCE, 2004, 303 (5666) : 2011 - 2015
  • [8] Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a
    Castrillon, DH
    Miao, LL
    Kollipara, R
    Horner, JW
    DePinho, RA
    [J]. SCIENCE, 2003, 301 (5630) : 215 - 218
  • [9] HATs on and beyond chromatin
    Chen, HW
    Tini, M
    Evans, RM
    [J]. CURRENT OPINION IN CELL BIOLOGY, 2001, 13 (02) : 218 - 224
  • [10] Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice
    Cheng, HL
    Mostoslavsky, R
    Saito, S
    Manis, JP
    Gu, YS
    Patel, P
    Bronson, R
    Appella, E
    Alt, FW
    Chua, KF
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (19) : 10794 - 10799