Stellar remnants in galactic nuclei: Mass segregation

被引:190
作者
Freitag, Marc
Amaro-Seoane, Pau
Kalogera, Vassiliki
机构
[1] Northwestern Univ, Dept Phys & Astron, Evanston, IL 60208 USA
[2] Univ Cambridge, Inst Astron, Cambridge CB3 0HA, England
[3] Max Planck Inst Gravitat Phys, Albert Einstein Inst, D-14476 Potsdam, Germany
关键词
black hole physics; galaxies : nuclei; galaxies : star clusters; gravitational waves; methods : n-body simulations; stellar dynamics;
D O I
10.1086/506193
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The study of how stars distribute themselves around a massive black hole (MBH) in the center of a galaxy is an important prerequisite for the understanding of many galactic-center processes. These include the observed overabundance of point X-ray sources at the Galactic center and the prediction of rates and characteristics of tidal disruptions of extended stars by the MBH and of inspirals of compact stars into the MBH, the latter being events of high importance for the future space-borne gravitational wave interferometer LISA. In relatively small galactic nuclei hosting MBHs with masses in the range 10(5)-10(7) M-circle dot, the single most important dynamical process is two-body relaxation. It induces the formation of a steep density cusp around the MBH and strong mass segregation, as more massive stars lose energy to lighter ones and drift to the central regions. Using a spherical stellar dynamical Monte Carlo code, we simulate the long-term relaxational evolution of galactic nucleus models with a spectrum of stellar masses. Our focus is the concentration of stellar black holes to the immediate vicinity of the MBH. We quantify this mass segregation for a variety of galactic nucleus models and discuss its astrophysical implications. Special attention is given to models developed to match the conditions in the Milky Way nucleus; we examine the presence of compact objects in connection to recent high-resolution X-ray observations.
引用
收藏
页码:91 / 117
页数:27
相关论文
共 181 条