Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry

被引:102
作者
Rappoport, Dmitrij [1 ]
Galvin, Cooper J. [2 ]
Zubarev, Dmitry Yu. [1 ]
Aspuru-Guzik, Alan [1 ]
机构
[1] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[2] Pomona Coll, Claremont, CA 91711 USA
基金
美国国家科学基金会;
关键词
KINETIC-MODELS; MECHANISM; GENERATION; CONSTRUCTION; ENERGY; OPTIMIZATION; ORGANIZATION; SIMULATIONS; PRECURSORS; PREDICTION;
D O I
10.1021/ct401004r
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
引用
收藏
页码:897 / 907
页数:11
相关论文
共 99 条
  • [71] METHODS OF REACTIVITY UMPOLUNG
    SEEBACH, D
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1979, 18 (04): : 239 - 258
  • [72] Cytoscape: A software environment for integrated models of biomolecular interaction networks
    Shannon, P
    Markiel, A
    Ozier, O
    Baliga, NS
    Wang, JT
    Ramage, D
    Amin, N
    Schwikowski, B
    Ideker, T
    [J]. GENOME RESEARCH, 2003, 13 (11) : 2498 - 2504
  • [73] Using path sampling to build better Markovian state models: Predicting the folding rate and mechanism of a tryptophan zipper beta hairpin
    Singhal, N
    Snow, CD
    Pande, VS
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (01) : 415 - 425
  • [74] Optimization of parameters for semiempirical methods VI: more modifications to the NDDO approximations and re-optimization of parameters
    Stewart, James J. P.
    [J]. JOURNAL OF MOLECULAR MODELING, 2013, 19 (01) : 1 - 32
  • [75] A priori rate constants for kinetic modeling
    Sumathi, R
    Green, WH
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2002, 108 (04) : 187 - 213
  • [76] Rate-based construction of kinetic models for complex systems
    Susnow, RG
    Dean, AM
    Green, WH
    Peczak, P
    Broadbelt, LJ
    [J]. JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (20) : 3731 - 3740
  • [77] Describing protein folding kinetics by molecular dynamics simulations.: 2.: Example applications to alanine dipeptide and β-hairpin peptide
    Swope, WC
    Pitera, JW
    Suits, F
    Pitman, M
    Eleftheriou, M
    Fitch, BG
    Germain, RS
    Rayshubski, A
    Ward, TJC
    Zhestkov, Y
    Zhou, R
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (21) : 6582 - 6594
  • [78] Computer-aided organic synthesis
    Todd, MH
    [J]. CHEMICAL SOCIETY REVIEWS, 2005, 34 (03) : 247 - 266
  • [79] Quantum mechanical continuum solvation models
    Tomasi, J
    Mennucci, B
    Cammi, R
    [J]. CHEMICAL REVIEWS, 2005, 105 (08) : 2999 - 3093
  • [80] Tomlin AS, 1997, COMPR CHEM KINET, V35, P293