Analysis of flow in rotating packed beds via CFD simulations-Dry pressure drop and gas flow maldistribution

被引:117
作者
Llerena-Chavez, Hugo [1 ]
Larachi, Faical [1 ]
机构
[1] Univ Laval, Dept Chem Engn, Quebec City, PQ G1V 0A6, Canada
关键词
Rotating packed bed; Aerodynamics; Tangential flow; Pressure gradient; Maldistribution; MASS-TRANSFER; PROCESS INTENSIFICATION; OPERATING CHARACTERISTICS; NUMERICAL-SIMULATION; GRAVITATIONAL FORCE; CARBON-DIOXIDE; LIQUID HOLDUP; ABSORPTION; HIGEE; NANOPARTICLES;
D O I
10.1016/j.ces.2009.01.019
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Three-dimensional unsteady-state turbulent rotating single-phase flows were simulated in rotating packed beds (RPB) and were validated using overall dry pressure drop measurements for three RPB designs [Liu, H.-S., Lin, C.-C., Wu, S.-C., Hsu, H.-W., 1996. Characteristics of a rotating packed bed. Industrial and Engineering Chemistry Research 35, 3590-3596; Sandilya, P., Rao, D.P., Sharma, A., Biswas, G., 2001b. Gas-phase mass transfer in a centrifugal contactor. Industrial and Engineering Chemistry Research 40, 384-392; Zheng, C., Guo, K., Feng, Y.D., Yung, C., 2000. Pressure drop of centripetal gas flow through rotating bed. Industrial and Engineering Chemistry Research 39, 829-834]. Analysis of the radial and tangential velocities highlighted the impact of gas feed entrance effects on the peripheral gas maldistribution in the rotating packing module. Recommendations were formulated for an optimum design with the aim to reduce gas flow maldistribution in RPBs. Breakdown of the overall pressure drop in its modular components for the housing, the rotating packing module, the free inner rotational zone, and the gas disengagement showed that the dissipation in the rotating packing could be a minor contributor to the overall pressure drop which may be undesirable in terms of RPB mass transfer and reaction efficiencies. Analysis of the simulated pressure drops allowed development of CFD-based Ergun-type semi-empirical relationships in which the gas-slip and radial acceleration effects, the laminar and inertial drag effects. and the centrifugal effect were aggregated additively to recompose the pressure drops in the rotating packing module. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2113 / 2126
页数:14
相关论文
共 70 条
[31]   ON FLOW BETWEEN A ROTATING AND A STATIONARY DISK [J].
MELLOR, GL ;
CHAPPLE, PJ ;
STOKES, VK .
JOURNAL OF FLUID MECHANICS, 1968, 31 :95-&
[32]   MASS-TRANSFER IN ROTATING PACKED-BEDS .1. DEVELOPMENT OF GAS-LIQUID AND LIQUID SOLID MASS-TRANSFER CORRELATIONS [J].
MUNJAL, S ;
DUDUKOVIC, MP ;
RAMACHANDRAN, P .
CHEMICAL ENGINEERING SCIENCE, 1989, 44 (10) :2245-2256
[33]   MASS-TRANSFER IN ROTATING PACKED-BEDS .2. EXPERIMENTAL RESULTS AND COMPARISON WITH THEORY AND GRAVITY FLOW [J].
MUNJAL, S ;
DUDUKOVIC, MP ;
RAMACHANDRAN, P .
CHEMICAL ENGINEERING SCIENCE, 1989, 44 (10) :2257-2268
[34]   TURBULENCE MODELS AND THEIR APPLICATIONS TO THE PREDICTION OF INTERNAL FLOWS - A REVIEW [J].
NALLASAMY, M .
COMPUTERS & FLUIDS, 1987, 15 (02) :151-194
[35]  
PAN C, 2002, HUANJING WURAN ZHILI, V3, P88
[36]   Process intensification: Higee seawater deaeration [J].
Peel, J ;
Howarth, CR ;
Ramshaw, C .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 1998, 76 (A5) :585-593
[37]  
Podbielnak WJ., 1966, US Patents, Patent No. [3,233,880, 3233880]
[38]  
PODBIELNIAK WJ, 1967, Patent No. 3336015
[39]   Numerical simulation and experimental validation of heat transfer within rotating flows for three-dimensional non-axisymmetric, turbulent conditions [J].
Raimundo, AM ;
Oliveira, LA ;
Figueiredo, AR .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2002, 40 (06) :821-840
[40]  
Ramsha C., 1983, CHEM ENGR, V389, P13