Levels of symmetry adapted perturbation theory (SAPT). I. Efficiency and performance for interaction energies

被引:703
作者
Parker, Trent M.
Burns, Lori A.
Parrish, Robert M.
Ryno, Alden G.
Sherrill, C. David [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biochem, Ctr Computat Mol Sci & Technol, Atlanta, GA 30332 USA
基金
美国能源部; 美国国家科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; BASIS-SETS; AROMATIC RINGS; WAVE-FUNCTION; BENZENE; APPROXIMATION; INCLUSION; COMPLEXES; DATABASE; CCSD(T);
D O I
10.1063/1.4867135
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A systematic examination of the computational expense and accuracy of Symmetry-Adapted Perturbation Theory (SAPT) for the prediction of non-covalent interaction energies is provided with respect to both method [SAPT0, DFT-SAPT, SAPT2, SAPT2+, SAPT2+(3), and SAPT2+ 3; with and without CCD dispersion for the last three] and basis set [Dunning cc-pVDZ through aug-cc-pV5Z wherever computationally tractable, including truncations of diffuse basis functions]. To improve accuracy for hydrogen-bonded systems, we also include two corrections based on exchange-scaling (sSAPT0) and the supermolecular MP2 interaction energy (delta MP2). When considering the best error performance relative to computational effort, we recommend as the gold, silver, and bronze standard of SAPT: SAPT2+(3)delta MP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ, and sSAPT0/jun-cc-pVDZ. Their respective mean absolute errors in interaction energy across the S22, HBC6, NBC10, and HSG databases are 0.15 (62.9), 0.30 (4.4), and 0.49 kcal mol(-1) (0.03 h for adenine . thymine complex). (C) 2014 AIP Publishing LLC.
引用
收藏
页数:16
相关论文
共 65 条
[1]  
[Anonymous], 1993, Method and Techniques in Computational and Chemistry: METECC94
[2]   CALCULATION OF SMALL MOLECULAR INTERACTIONS BY DIFFERENCES OF SEPARATE TOTAL ENERGIES - SOME PROCEDURES WITH REDUCED ERRORS [J].
BOYS, SF ;
BERNARDI, F .
MOLECULAR PHYSICS, 1970, 19 (04) :553-&
[3]  
Burns L. A., APPOINTING SIL UNPUB
[4]   Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals [J].
Burns, Lori A. ;
Vazquez-Mayagoitia, Alvaro ;
Sumpter, Bobby G. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08)
[6]   A road map for the calculation of molecular binding energies [J].
Dunning, TH .
JOURNAL OF PHYSICAL CHEMISTRY A, 2000, 104 (40) :9062-9080
[7]   Formal Estimation of Errors in Computed Absolute Interaction Energies of Protein-Ligand Complexes [J].
Faver, John C. ;
Benson, Mark L. ;
He, Xiao ;
Roberts, Benjamin P. ;
Wang, Bing ;
Marshall, Michael S. ;
Kennedy, Matthew R. ;
Sherrill, C. David ;
Merz, Kenneth M., Jr. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2011, 7 (03) :790-797
[8]   Accurate Prediction of Noncovalent Interaction Energies with the Effective Fragment Potential Method: Comparison of Energy Components to Symmetry-Adapted Perturbation Theory for the S22 Test Set [J].
Flick, Joanna C. ;
Kosenkov, Dmytro ;
Hohenstein, Edward G. ;
Sherrill, C. David ;
Slipchenko, Lyudmila V. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (08) :2835-2843
[9]   Accurately Characterizing the π-π Interaction Energies of Indole-Benzene Complexes [J].
Geng, Yue ;
Takatani, Tait ;
Hohenstein, Edward G. ;
Sherrill, C. David .
JOURNAL OF PHYSICAL CHEMISTRY A, 2010, 114 (10) :3576-3582
[10]   Comparative Study of Selected Wave Function and Density Functional Methods for Noncovalent Interaction Energy Calculations Using the Extended S22 Data Set [J].
Grafova, Lucie ;
Pitonak, Michal ;
Rezac, Jan ;
Hobza, Pavel .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (08) :2365-2376