A systematic examination of the computational expense and accuracy of Symmetry-Adapted Perturbation Theory (SAPT) for the prediction of non-covalent interaction energies is provided with respect to both method [SAPT0, DFT-SAPT, SAPT2, SAPT2+, SAPT2+(3), and SAPT2+ 3; with and without CCD dispersion for the last three] and basis set [Dunning cc-pVDZ through aug-cc-pV5Z wherever computationally tractable, including truncations of diffuse basis functions]. To improve accuracy for hydrogen-bonded systems, we also include two corrections based on exchange-scaling (sSAPT0) and the supermolecular MP2 interaction energy (delta MP2). When considering the best error performance relative to computational effort, we recommend as the gold, silver, and bronze standard of SAPT: SAPT2+(3)delta MP2/aug-cc-pVTZ, SAPT2+/aug-cc-pVDZ, and sSAPT0/jun-cc-pVDZ. Their respective mean absolute errors in interaction energy across the S22, HBC6, NBC10, and HSG databases are 0.15 (62.9), 0.30 (4.4), and 0.49 kcal mol(-1) (0.03 h for adenine . thymine complex). (C) 2014 AIP Publishing LLC.