Nonlinear dynamical system identification from uncertain and indirect measurements

被引:209
作者
Voss, HU [1 ]
Timmer, J
Kurths, J
机构
[1] Univ Freiburg, Freiburg Ctr Data Anal & Modeling, D-79104 Freiburg, Germany
[2] Univ Potsdam, Ctr Dynam Complex Syst, D-14469 Potsdam, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2004年 / 14卷 / 06期
关键词
system identification; multiple shooting algorithm; unscented Kalman filter; maximum likelihood;
D O I
10.1142/S0218127404010345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review the problem of estimating parameters and unobserved trajectory components from noisy time series measurements of continuous nonlinear dynamical systems. It is first shown that in parameter estimation techniques that do not take the measurement errors explicitly into account, like regression approaches, noisy measurements can produce inaccurate parameter estimates. Another problem is that for chaotic systems the cost functions that have to be minimized to estimate states and parameters are so complex that common optimization routines may fail. We show that the inclusion of information about the time-continuous nature of the underlying trajectories can improve parameter estimation considerably. Two approaches, which take into account both the errors-in-variables problem and the problem of complex cost functions, are described in detail: shooting approaches and recursive estimation techniques. Both are demonstrated on numerical examples.
引用
收藏
页码:1905 / 1933
页数:29
相关论文
共 166 条
[1]  
Abarbanel H., 1996, ANAL OBSERVED CHAOTI
[2]   THE ANALYSIS OF OBSERVED CHAOTIC DATA IN PHYSICAL SYSTEMS [J].
ABARBANEL, HDI ;
BROWN, R ;
SIDOROWICH, JJ ;
TSIMRING, LS .
REVIEWS OF MODERN PHYSICS, 1993, 65 (04) :1331-1392
[3]   RETRIEVING DYNAMICAL INVARIANTS FROM CHAOTIC DATA USING NARMAX MODELS [J].
AGUIRRE, LA ;
BILLINGS, SA .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (02) :449-474
[4]   SINGULAR-VALUE DECOMPOSITION AND THE GRASSBERGER-PROCACCIA ALGORITHM [J].
ALBANO, AM ;
MUENCH, J ;
SCHWARTZ, C ;
MEES, AI ;
RAPP, PE .
PHYSICAL REVIEW A, 1988, 38 (06) :3017-3026
[5]  
Alligood K.T., 1997, CHAOS INTRO DYNAMICA, DOI 10.1063/1.882006
[6]   Pattern dynamics of vortex ripples in sand: Nonlinear modeling and experimental validation [J].
Andersen, KH ;
Abel, M ;
Krug, J ;
Ellegaard, C ;
Sondergaard, LR ;
Udesen, J .
PHYSICAL REVIEW LETTERS, 2002, 88 (23) :2343021-2343024
[7]  
Anderson B., 1979, OPTIMAL FILTERING
[8]  
Anderson Jr, 2000, ADV INSTR P, V5, P1
[9]  
[Anonymous], 1963, MAGYAR TUD AKAD MAT
[10]  
Aoki Masanao., 2013, STATE SPACE MODELING