Nonlinear dynamical system identification from uncertain and indirect measurements

被引:209
作者
Voss, HU [1 ]
Timmer, J
Kurths, J
机构
[1] Univ Freiburg, Freiburg Ctr Data Anal & Modeling, D-79104 Freiburg, Germany
[2] Univ Potsdam, Ctr Dynam Complex Syst, D-14469 Potsdam, Germany
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2004年 / 14卷 / 06期
关键词
system identification; multiple shooting algorithm; unscented Kalman filter; maximum likelihood;
D O I
10.1142/S0218127404010345
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review the problem of estimating parameters and unobserved trajectory components from noisy time series measurements of continuous nonlinear dynamical systems. It is first shown that in parameter estimation techniques that do not take the measurement errors explicitly into account, like regression approaches, noisy measurements can produce inaccurate parameter estimates. Another problem is that for chaotic systems the cost functions that have to be minimized to estimate states and parameters are so complex that common optimization routines may fail. We show that the inclusion of information about the time-continuous nature of the underlying trajectories can improve parameter estimation considerably. Two approaches, which take into account both the errors-in-variables problem and the problem of complex cost functions, are described in detail: shooting approaches and recursive estimation techniques. Both are demonstrated on numerical examples.
引用
收藏
页码:1905 / 1933
页数:29
相关论文
共 166 条
[21]  
Bock H. G., 1983, Progress in Scientific Computating, P95, DOI DOI 10.1007/978-1-4684-7324-77
[22]   A STABLE AND EFFICIENT ALGORITHM FOR NONLINEAR ORTHOGONAL DISTANCE REGRESSION [J].
BOGGS, PT ;
BYRD, RH ;
SCHNABEL, RB .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (06) :1052-1078
[23]   RECONSTRUCTING EQUATIONS OF MOTION FROM EXPERIMENTAL-DATA WITH UNOBSERVED VARIABLES [J].
BREEDEN, JL ;
HUBLER, A .
PHYSICAL REVIEW A, 1990, 42 (10) :5817-5826
[24]  
BREIMAN L, 1985, J AM STAT ASSOC, V80, P580, DOI 10.2307/2288473
[25]   Markov chain Monte Carlo estimation of nonlinear dynamics from time series [J].
Bremer, CL ;
Kaplan, DT .
PHYSICA D-NONLINEAR PHENOMENA, 2001, 160 (1-2) :116-126
[26]  
Bröcker J, 2001, CHAOS, V11, P319, DOI 10.1063/1.1357454
[27]  
Bryson A. E., 1969, Applied Optimal Control: Optimization, Estimation, and Control
[29]   A MONTE-CARLO APPROACH TO NONNORMAL AND NONLINEAR STATE-SPACE MODELING [J].
CARLIN, BP ;
POLSON, NG ;
STOFFER, DS .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (418) :493-500
[30]  
Carroll RJ., 1995, MEASUREMENT ERROR NO