A MONTE-CARLO APPROACH TO NONNORMAL AND NONLINEAR STATE-SPACE MODELING

被引:320
作者
CARLIN, BP
POLSON, NG
STOFFER, DS
机构
[1] UNIV CHICAGO,GRAD SCH BUSINESS,CHICAGO,IL 60637
[2] UNIV PITTSBURGH,DEPT MATH & STAT,PITTSBURGH,PA 15260
[3] CARNEGIE MELLON UNIV,DEPT STAT,PITTSBURGH,PA 15213
关键词
FORECASTING; GIBBS SAMPLER; KALMAN FILTER; SMOOTHING;
D O I
10.2307/2290282
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A solution to multivariate state-space modeling, forecasting, and smoothing is discussed. We allow for the possibilities of nonnormal errors and nonlinear functionals in the state equation, the observational equation, or both. An adaptive Monte Carlo integration technique known as the Gibbs sampler is proposed as a mechanism for implementing a conceptually and computationally simple solution in such a framework. The methodology is a general strategy for obtaining marginal posterior densities of coefficients in the model or of any of the unknown elements of the state space. Missing data problems (including the k-step ahead prediction problem) also are easily incorporated into this framework. We illustrate the broad applicability of our approach with two examples: a problem involving nonnormal error distributions in a linear model setting and a one-step ahead prediction problem in a situation where both the state and observational equations are nonlinear and involve unknown parameters.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 26 条
  • [1] NONLINEAR BAYESIAN ESTIMATION USING GAUSSIAN SUM APPROXIMATIONS
    ALSPACH, DL
    SORENSON, HW
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (04) : 439 - &
  • [2] ANDREWS DF, 1974, J ROY STAT SOC B MET, V36, P99
  • [3] [Anonymous], 1991, STAT COMPUT
  • [4] INFINITE DIVISIBILITY OF HYPERBOLIC AND GENERALIZED INVERSE GAUSSIAN DISTRIBUTIONS
    BARNDORFFNIELSEN, O
    HALGREEN, C
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 38 (04): : 309 - 311
  • [5] BESAG J, 1974, J ROY STAT SOC B MET, V36, P192
  • [6] Brockwell P., 1991, TIME SERIES THEORY M, V2nd ed.
  • [7] INFERENCE FOR NONCONJUGATE BAYESIAN MODELS USING THE GIBBS SAMPLER
    CARLIN, BP
    POLSON, NG
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1991, 19 (04): : 399 - 405
  • [8] Devroye L., 1986, NONUNIFORM RANDOM VA
  • [9] SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES
    GELFAND, AE
    SMITH, AFM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) : 398 - 409
  • [10] ILLUSTRATION OF BAYESIAN-INFERENCE IN NORMAL DATA MODELS USING GIBBS SAMPLING
    GELFAND, AE
    HILLS, SE
    RACINEPOON, A
    SMITH, AFM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (412) : 972 - 985