Membrane fusion mediated by coiled coils: A hypothesis

被引:113
作者
Bentz, J [1 ]
机构
[1] Drexel Univ, Dept Biosci & Biotechnol, Philadelphia, PA 19104 USA
关键词
D O I
10.1016/S0006-3495(00)76646-X
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
molecular model of the low-pH-induced membrane fusion by influenza hemagglutinin (HA) is proposed based upon the hypothesis that the conformational change to the extended coiled coil creates a high-energy hydrophobic membrane defect in the viral envelope or HA expressing cell. It is known that 1) an aggregate of at least eight HAs is required at the fusion site, yet only two or three of these HAs need to undergo the "essential" conformational change for the first fusion pore to form (Bentz, J. 2000. Biophys. J. 78:000-000); 2) the formation of the first fusion pore signifies a stage of restricted lipid flow into the nascent fusion site; and 3) some HAs can partially insert their fusion peptides into their own viral envelopes at low pH. This suggests that the committed step for HA-mediated fusion begins with a tightly packed aggregate of HAs whose fusion peptides are inserted into their own viral envelope, which causes restricted lateral lipid flow within the HA aggregate. The transition of two or three HAs in the center of the aggregate to the extended coiled coil extracts the fusion peptide and creates a hydrophobic defect in the outer monolayer of the virion, which is stabilized by the closely packed HAs. These HAs are inhibited from diffusing away from the site to admit lateral lipid flow, in part because that would initially increase the surface area of hydrophobic exposure. The other obvious pathway to heal this hydrophobic defect, or some descendent, is recruitment of lipids from the outer monolayer of the apposed target membrane, i.e., fusion. Other viral fusion proteins and the SNARE fusion protein complex appear to fit within this hypothesis.
引用
收藏
页码:886 / 900
页数:15
相关论文
共 97 条
[21]   The transmembrane domain in viral fusion: Essential role for a conserved glycine residue in vesicular stomatitis virus G protein [J].
Cleverley, DZ ;
Lenard, J .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (07) :3425-3430
[22]   Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers [J].
Danieli, T ;
Pelletier, SL ;
Henis, YI ;
White, JM .
JOURNAL OF CELL BIOLOGY, 1996, 133 (03) :559-569
[23]   The role of protonation and metal chelation preferences in defining the properties of mercury-binding coiled coils [J].
Dieckmann, GR ;
McRorie, DK ;
Lear, JD ;
Sharp, KA ;
DeGrado, WF ;
Pecoraro, VL .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 280 (05) :897-912
[24]  
DORNS RW, 1998, VIROLOGY, V235, P179
[25]   What studies of fusion peptides tell us about viral envelope glycoprotein-mediated membrane fusion [J].
Durell, SR ;
Martin, I ;
Ruysschaert, JM ;
Shai, Y ;
Blumenthal, R .
MOLECULAR MEMBRANE BIOLOGY, 1997, 14 (03) :97-112
[26]   Inhibiting HIV-1 entry: Discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket [J].
Eckert, DM ;
Malashkevich, VN ;
Hong, LH ;
Carr, PA ;
Kim, PS .
CELL, 1999, 99 (01) :103-115
[27]   FUSION OF INFLUENZA HEMAGGLUTININ-EXPRESSING FIBROBLASTS WITH GLYCOPHORIN-BEARING LIPOSOMES - ROLE OF HEMAGGLUTININ SURFACE-DENSITY [J].
ELLENS, H ;
BENTZ, J ;
MASON, D ;
ZHANG, F ;
WHITE, JM .
BIOCHEMISTRY, 1990, 29 (41) :9697-9707
[28]   MEMBRANE-FUSION AND INVERTED PHASES [J].
ELLENS, H ;
SIEGEL, DP ;
ALFORD, D ;
YEAGLE, PL ;
BONI, L ;
LIS, LJ ;
QUINN, PJ ;
BENTZ, J .
BIOCHEMISTRY, 1989, 28 (09) :3692-3703
[29]   The ectodomain of HA2 of influenza virus promotes rapid pH dependent membrane fusion [J].
Epand, RF ;
Macosko, JC ;
Russell, CJ ;
Shin, YK ;
Epand, RM .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 286 (02) :489-503
[30]   Retrovirus envelope domain at 1.7 angstrom resolution [J].
Fass, D ;
Harrison, SC ;
Kim, PS .
NATURE STRUCTURAL BIOLOGY, 1996, 3 (05) :465-469