Bifurcations of one-dimensional stochastic differential equations

被引:64
作者
Crauel, H [1 ]
Imkeller, P [1 ]
Steinkamp, M [1 ]
机构
[1] Tech Univ Berlin, Fachbereich Math, D-10623 Berlin, Germany
来源
STOCHASTIC DYNAMICS | 1999年
关键词
D O I
10.1007/0-387-22655-9_2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider families of random dynamical systems induced by parametrized one-dimensional stochastic differential equations. We give necessary and sufficient conditions on the invariant measures of the associated Markov semigroups which ensure a stochastic bifurcation. This leads to sufficient conditions on drift and diffusion coefficients for a stochastic pitchfork and transcritical bifurcation of the family of random dynamical systems.
引用
收藏
页码:27 / 47
页数:21
相关论文
共 14 条
[1]   PERFECT COCYCLES THROUGH STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
ARNOLD, L ;
SCHEUTZOW, M .
PROBABILITY THEORY AND RELATED FIELDS, 1995, 101 (01) :65-88
[2]  
ARNOLD L, 1992, DIFFUSION PROCESSES, V2, P241
[3]  
ARNOLD L, 1996, IUTAM S ADV NONL STO, P19
[4]  
Arnold L., 1998, RANDOM DYNAMICAL SYS
[5]  
BAXENDALE PH, 1986, LECT NOTES MATH, V1203, P1
[6]   Additive noise destroys a pitchfork bifurcation [J].
Crauel H. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1998, 10 (2) :259-274
[7]  
Crauel H., 1991, Stochastics and Stochastics Reports, V37, P153, DOI 10.1080/17442509108833733
[8]   NON-MARKOVIAN INVARIANT-MEASURES ARE HYPERBOLIC [J].
CRAUEL, H .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 45 (01) :13-28
[9]  
Hackenbroch W., 1994, MATH LEITFDEN
[10]  
Horsthemke W., 1984, Noise-Induced Transitions. Theory and Applications in Physics, Chemistry and Biology