Probing nanoscale photo-oxidation in organic films using spatial hole burning near-field scanning optical microscopy

被引:20
作者
Credo, GM [1 ]
Lowman, GM [1 ]
DeAro, JA [1 ]
Carson, PJ [1 ]
Winn, DL [1 ]
Buratto, SK [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 USA
关键词
D O I
10.1063/1.481391
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Spatial hole burning near-field scanning optical microscopy (SHB-NSOM) is used to locally photopattern three species of organic thin films, poly(2-methoxy, 5-(2'-ethyl hexyloxy)-p-phenylene vinylene) (MEH-PPV), tris-8-hydroxyquinoline aluminum (Alq(3)) and dye-functionalized polyelectrolyte self-assembled layers, on a 100 nm length scale. In SHB-NSOM the film is illuminated with light from a stationary NSOM tip to induce photo-oxidation. The reduction in the fluorescence yield resulting from this exposure is then mapped using fluorescence NSOM (FL-NSOM). We have examined the localized photo-oxidation as a function of time, position, and environment free from the limits of far-field spatial averaging. In all of the thin film materials studied we find that the long-time diameter of the dark spot is much larger than the tip diameter and is a signature of energy migration. Characteristic lengths of the energy migration are extracted from this data by a simple diffusion model and are found to be of the order of a few hundred nanometers for each of the films studied. (C) 2000 American Institute of Physics. [S0021-9606(00)71116-0].
引用
收藏
页码:7864 / 7872
页数:9
相关论文
共 49 条
[1]  
BERRY RS, 1980, PHYSICAL CHEM, P720
[2]   NEAR-FIELD OPTICS - MICROSCOPY, SPECTROSCOPY, AND SURFACE MODIFICATION BEYOND THE DIFFRACTION LIMIT [J].
BETZIG, E ;
TRAUTMAN, JK .
SCIENCE, 1992, 257 (5067) :189-195
[3]   COMBINED SHEAR FORCE AND NEAR-FIELD SCANNING OPTICAL MICROSCOPY [J].
BETZIG, E ;
FINN, PL ;
WEINER, JS .
APPLIED PHYSICS LETTERS, 1992, 60 (20) :2484-2486
[4]   BREAKING THE DIFFRACTION BARRIER - OPTICAL MICROSCOPY ON A NANOMETRIC SCALE [J].
BETZIG, E ;
TRAUTMAN, JK ;
HARRIS, TD ;
WEINER, JS ;
KOSTELAK, RL .
SCIENCE, 1991, 251 (5000) :1468-1470
[5]   Near-field scanning optical microscopy [J].
Buratto, SK .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 1996, 1 (04) :485-492
[6]   LIGHT-EMITTING-DIODES BASED ON CONJUGATED POLYMERS [J].
BURROUGHES, JH ;
BRADLEY, DDC ;
BROWN, AR ;
MARKS, RN ;
MACKAY, K ;
FRIEND, RH ;
BURN, PL ;
HOLMES, AB .
NATURE, 1990, 347 (6293) :539-541
[7]   Relationship between electroluminescence and current transport in organic heterojunction light-emitting devices [J].
Burrows, PE ;
Shen, Z ;
Bulovic, V ;
McCarty, DM ;
Forrest, SR ;
Cronin, JA ;
Thompson, ME .
JOURNAL OF APPLIED PHYSICS, 1996, 79 (10) :7991-8006
[8]   ELECTROLUMINESCENCE FROM TRAP-LIMITED CURRENT TRANSPORT IN VACUUM-DEPOSITED ORGANIC LIGHT-EMITTING DEVICES [J].
BURROWS, PE ;
FORREST, SR .
APPLIED PHYSICS LETTERS, 1994, 64 (17) :2285-2287
[9]   LOW-VOLTAGE SCANNING ELECTRON-MICROSCOPY OF POLYMERS [J].
BUTLER, JH ;
JOY, DC ;
BRADLEY, GF ;
KRAUSE, SJ .
POLYMER, 1995, 36 (09) :1781-1790
[10]  
Credo GM, 2000, ADV MATER, V12, P183, DOI 10.1002/(SICI)1521-4095(200002)12:3<183::AID-ADMA183>3.0.CO