A new family of KC transporters from Arabidopsis that are conserved across phyla

被引:127
作者
Quintero, FJ
Blatt, MR
机构
[1] Lab. of Plant Physiol. and Biophys., University of London, Wye College
关键词
K+; uptake; low affinity; K+ channel; multigene family; yeast complementation; gene expression;
D O I
10.1016/S0014-5793(97)01125-3
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transport of K+ in higher plants, as in bacteria and fungi, is mediated by two broad classes of transport proteins that operate in the millimolar and micromolar K+ concentration ranges. A search of the Expressed Sequence Tag database using amino acid consensus sequences for the K+ transporters HAK1 from Schwanniomyces and Kup of Escherichia coli yielded two homologous sequences for Arabidopsis. Cloning and sequencing of these genes gave single open reading frames for the putative transporters, AtKT1 and AtKT2, with predicted molecular weights of 79 and 88 kDa. The predicted gene products showed a high degree of homology at the amino acid level (56% identity) and exhibited significant hydrophobic stretches in their N-terminal halves, consistent with 12 membrane-spanning, alpha-helical domains. Database searches using AtKT1 and AtKT2 identified 10 additional sequences in Arabidopsis as well as additional homologous sequences in the plant species Oryza and Allium, the bacterium Lactococcus lactis, and in Homo sapiens. Expression of AtKT2 rescued growth on low millimolar [K+] in Saccharomyces cerevisiae carrying deletions for the genes encoding the K+ transporters TRK1 and TRK2. Rescue was associated with a 2-fold stimulation of Rb+ uptake and was sensitive to competition with external Na+ but not to extracellular pH, indicating that the gene encodes a low-affinity K+ transporter. These and additional results suggest that AtKT1 and AtKT2 belong to a superfamily of cation transporters that have been conserved through evolution. (C) 1997 Federation of European Biochemical Societies.
引用
收藏
页码:206 / 211
页数:6
相关论文
共 32 条
[1]   FUNCTIONAL EXPRESSION OF A PROBABLE ARABIDOPSIS-THALIANA POTASSIUM CHANNEL IN SACCHAROMYCES-CEREVISIAE [J].
ANDERSON, JA ;
HUPRIKAR, SS ;
KOCHIAN, LV ;
LUCAS, WJ ;
GABER, RF .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1992, 89 (09) :3736-3740
[2]  
BAKKER EP, 1992, ALKALI CATION TRANSP, P253
[3]   A POTASSIUM TRANSPORTER OF THE YEAST SCHWANNIOMYCES-OCCIDENTALIS HOMOLOGOUS TO THE KUP SYSTEM OF ESCHERICHIA-COLI HAS A HIGH CONCENTRATIVE CAPACITY [J].
BANUELOS, MA ;
KLEIN, RD ;
ALEXANDERBOWMAN, SJ ;
RODRIGUEZNAVARRO, A .
EMBO JOURNAL, 1995, 14 (13) :3021-3027
[4]   HORMONAL-CONTROL OF ION-CHANNEL GATING [J].
BLATT, MR ;
THIEL, G .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1993, 44 :543-567
[5]   Plant potassium channels double up [J].
Blatt, MR .
TRENDS IN PLANT SCIENCE, 1997, 2 (07) :244-246
[6]   Arabidopsis consensus intron sequences [J].
Brown, JWS ;
Smith, P ;
Simpson, CG .
PLANT MOLECULAR BIOLOGY, 1996, 32 (03) :531-535
[7]   MULTIPLE GENES, TISSUE-SPECIFICITY, AND EXPRESSION-DEPENDENT MODULATION CONTRIBUTE TO THE FUNCTIONAL DIVERSITY OF POTASSIUM CHANNELS IN ARABIDOPSIS-THALIANA [J].
CAO, YW ;
WARD, JM ;
KELLY, WB ;
ICHIDA, AM ;
GABER, RF ;
ANDERSON, JA ;
UOZUMI, N ;
SCHROEDER, JI ;
CRAWFORD, NM .
PLANT PHYSIOLOGY, 1995, 109 (03) :1093-1106
[8]   THE MINERAL-NUTRITION OF HIGHER-PLANTS [J].
CLARKSON, DT ;
HANSON, JB .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1980, 31 :239-298
[9]  
Dellaporta S.L., 1983, Plant Mol. Biol. Rep, V1, P19, DOI DOI 10.1007/BF02712670
[10]   FUNCTIONAL COMPLEMENTATION OF A NULL MUTATION OF THE YEAST SACCHAROMYCES-CEREVISIAE PLASMA-MEMBRANE H+-ATPASE BY A PLANT H+-ATPASE GENE [J].
DEXAERDE, AD ;
SUPPLY, P ;
DUFOUR, JP ;
BOGAERTS, P ;
THINES, D ;
GOFFEAU, A ;
BOUTRY, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (40) :23828-23837