The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies

被引:255
作者
Esconjauregui, Santiago [1 ,2 ]
Whelan, Caroline M. [2 ]
Maex, Karen [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, B-3001 Heverlee, Belgium
[2] IMEC, B-3001 Heverlee, Belgium
关键词
CHEMICAL-VAPOR-DEPOSITION; SINGLE-CRYSTAL SURFACES; FILAMENTOUS CARBON; TRANSITION-METALS; NICKEL CARBIDE; IRON CARBIDE; FILMS; SCALE; DECOMPOSITION; NANOPARTICLES;
D O I
10.1016/j.carbon.2008.10.047
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Carbon nanotubes (CNTs) and other carbon nanomorphologies are grown using "typical" (Ni, Co, and Fe) and "atypical" (Al, In, Pt, Ti, Mg, Pd, K, Cs, Na, W, Mn, Mo, Ir, and Ni3C) catalysts by chemical vapor deposition. X-ray diffraction analysis reveals the formation (and decomposition) of metal carbides at different stages of these growth reactions. Based on these results and various pieces of evidence gathered from the literature, we present a model that explains why different metals catalyze the nucleation and growth of CNTs or other carbon nanomorphologies, and in particular, why Ni, Co, and Fe display the highest catalytic activity. The catalytic activity of a metal strongly depends on its electronic structure. This property of the catalyst not only controls the decomposition of the carbon source, but also the formation and stability of metal carbides and, more importantly, the release of carbon atoms. Another property of significance is the enthalpy of formation of the carbon source because it enhances the activation of the catalyst. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:659 / 669
页数:11
相关论文
共 74 条
[11]   THE FORMATION OF FILAMENTOUS CARBON ON IRON AND NICKEL-CATALYSTS .1. THERMODYNAMICS [J].
DEBOKX, PK ;
KOCK, AJHM ;
BOELLAARD, E ;
KLOP, W ;
GEUS, JW .
JOURNAL OF CATALYSIS, 1985, 96 (02) :454-467
[12]   Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams [J].
Deck, CP ;
Vecchio, K .
CARBON, 2006, 44 (02) :267-275
[13]   Dependence of SWNT growth mechanism on temperature and catalyst particle size:: Bulk versus surface diffusion [J].
Ding, F ;
Rosén, A ;
Bolton, K .
CARBON, 2005, 43 (10) :2215-2217
[14]  
Drowart J., 1967, Ogneupory, P67
[15]   The role of the catalytic particle in the growth of carbon nanotubes by plasma enhanced chemical vapor deposition [J].
Ducati, C ;
Alexandrou, I ;
Chhowalla, M ;
Robertson, J ;
Amaratunga, GAJ .
JOURNAL OF APPLIED PHYSICS, 2004, 95 (11) :6387-6391
[16]   The catalyst in the CCVD of carbon nanotubes - a review [J].
Dupuis, AC .
PROGRESS IN MATERIALS SCIENCE, 2005, 50 (08) :929-961
[17]   Carbon nanotube catalysis by metal silicide: resolving inhibition versus growth [J].
Esconjauregui, Santiago ;
Whelan, Caroline M. ;
Maex, Karen .
NANOTECHNOLOGY, 2007, 18 (01)
[18]   WHY GOLD IS THE NOBLEST OF ALL THE METALS [J].
HAMMER, B ;
NORSKOV, JK .
NATURE, 1995, 376 (6537) :238-240
[19]   Atomic-scale imaging of carbon nanofibre growth [J].
Helveg, S ;
López-Cartes, C ;
Sehested, J ;
Hansen, PL ;
Clausen, BS ;
Rostrup-Nielsen, JR ;
Abild-Pedersen, F ;
Norskov, JK .
NATURE, 2004, 427 (6973) :426-429
[20]   Surface diffusion:: The low activation energy path for nanotube growth -: art. no. 036101 [J].
Hofmann, S ;
Csányi, G ;
Ferrari, AC ;
Payne, MC ;
Robertson, J .
PHYSICAL REVIEW LETTERS, 2005, 95 (03)