Diphosphorylation and involvement of extracellular signal-regulated kinases (ERK1/2) in glutamate-induced apoptotic-like death in cultured rat cortical neurons

被引:84
作者
Jiang, Q
Gu, ZL
Zhang, GY
Jing, GZ
机构
[1] Xuzhou Med Coll, Res Ctr Biochem & Mol Biol, Jiangsu 221002, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Mat Med, Shanghai 200031, Peoples R China
关键词
ERK; glutamate; excitotoxicity; apoptotic-like death; cultured cortical neuron; rat;
D O I
10.1016/S0006-8993(99)02364-1
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Glutamate-induced excitotoxicity, with certain characteristics of apoptosis, has been implicated in a variety of neuronal degenerative disorders. In some physiological cases, extracellular signal-regulated kinases (ERK1/2) are activated by stimulation of glutamate receptors. In the present study, the activation (diphosphorylation) and role of ERK1/2 in glutamate-induced apoptotic-like death in cultured cortical neurons were investigated. Protein levels and activation (diphosphorylation) levels of ERK1/2 were examined by Western immunoblot, probed with anti-ERK1/2 and anti-active (diphosphorylated) ERK1/2 antibodies, respectively. Apoptotic-like death was determined by DAPI staining. Before a remarkable increase of apoptotic-like cell death was observed at 9-18 h after 15 min exposure to 50 mu M glutamate, diphosphorylation levels of ERK1/2 were rapidly increased, peaked at 5-15 min of the exposure, and reverted to sham control level 3 h after the exposure, while the protein levels of ERK1/2 were unaffected. The glutamate concentration effective for inducing apoptotic-like cell death was correlated with that for inducing ERK1/2 diphosphorylation. Both ERK1/2 diphosphorylation and the apoptotic-like cell death were largely prevented by MK-801, a specific NMDA receptor (a subtype receptor of glutamate) antagonist, or the elimination of extracellular Ca2+ with EGTA. PD98059, a specific inhibitor of ERK1/2 kinase, completely inhibited ERK1/2 diphosphorylation and partially inhibited the apoptotic-like cell death. These results suggest that largely via NMDA receptor-mediated influx of extracellular Ca2+, ERK1/2 were rapidly and transiently activated and were involved in glutamate-induced apoptotic-like death in cultured rat cortical neurons. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:71 / 77
页数:7
相关论文
共 32 条
[1]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[2]   INCREASED EXPRESSION AND SUBCELLULAR TRANSLOCATION OF THE MITOGEN-ACTIVATED PROTEIN-KINASE KINASE AND MITOGEN-ACTIVATED PROTEIN-KINASE IN ALZHEIMERS-DISEASE [J].
ARENDT, T ;
HOLZER, M ;
GROSSMANN, A ;
ZEDLICK, D ;
BRUCKNER, MK .
NEUROSCIENCE, 1995, 68 (01) :5-18
[3]   STIMULATION OF PROTEIN TYROSINE PHOSPHORYLATION BY NMDA RECEPTOR ACTIVATION [J].
BADING, H ;
GREENBERG, ME .
SCIENCE, 1991, 253 (5022) :912-914
[4]   APOPTOSIS AND NECROSIS - 2 DISTINCT EVENTS INDUCED, RESPECTIVELY, BY MILD AND INTENSE INSULTS WITH N-METHYL-D-ASPARTATE OR NITRIC-OXIDE SUPEROXIDE IN CORTICAL CELL-CULTURES [J].
BONFOCO, E ;
KRAINC, D ;
ANKARCRONA, M ;
NICOTERA, P ;
LIPTON, SA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1995, 92 (16) :7162-7166
[5]   SERUM-FREE B27/NEUROBASAL MEDIUM SUPPORTS DIFFERENTIATED GROWTH OF NEURONS FROM THE STRIATUM, SUBSTANTIA-NIGRA, SEPTUM, CEREBRAL-CORTEX, CEREBELLUM, AND DENTATE GYRUS [J].
BREWER, GJ .
JOURNAL OF NEUROSCIENCE RESEARCH, 1995, 42 (05) :674-683
[6]  
DAVIS RJ, 1993, J BIOL CHEM, V268, P14553
[7]  
FINIELS F, 1995, J NEUROCHEM, V65, P1027
[8]   Ca2+-dependent routes to Ras: Mechanisms for neuronal survival, differentiation, and plasticity? [J].
Finkbeiner, S ;
Greenberg, ME .
NEURON, 1996, 16 (02) :233-236
[9]   ACTIVATION OF P42 MITOGEN-ACTIVATED PROTEIN-KINASE BY GLUTAMATE-RECEPTOR STIMULATION IN RAT PRIMARY CORTICAL CULTURES [J].
FIORE, RS ;
MURPHY, TH ;
SANGHERA, JS ;
PELECH, SL ;
BARABAN, JM .
JOURNAL OF NEUROCHEMISTRY, 1993, 61 (05) :1626-1633
[10]   Role of MAP kinase in neurons [J].
Fukunaga, K ;
Miyamoto, E .
MOLECULAR NEUROBIOLOGY, 1998, 16 (01) :79-95