Bayesian analysis of covariance matrices and dynamic models for longitudinal data

被引:113
作者
Daniels, MJ [1 ]
Pourahmadi, M
机构
[1] Iowa State Univ, Dept Stat, Ames, IA 50011 USA
[2] No Illinois Univ, Div Stat, De Kalb, IL 60115 USA
基金
美国国家卫生研究院;
关键词
antedependence and autoregressive models; Bayes estimate; hierarchical model; Markov chain Monte Carlo; mixed model; shrinkage estimator; time series model; unconstrained parameterisation; Wishart distribution;
D O I
10.1093/biomet/89.3.553
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Parsimonious modelling of the within-subject covariance structure while heeding its positive-definiteness is of great importance in the analysis of longitudinal data. Using the Cholesky decomposition and the ensuing unconstrained and statistically meaningful reparameterisation, we provide a convenient and intuitive framework for developing conditionally conjugate prior distributions for covariance matrices and show their connections with generalised inverse Wishart priors. Our priors offer many advantages with regard to elicitation, positive definiteness, computations using Gibbs sampling, shrinking covariances toward a particular structure with considerable flexibility, and modelling covariances using covariates. Bayesian estimation methods are developed and the results are compared using two simulation studies. These simulations suggest simpler and more suitable priors for the covariance structure of longitudinal data.
引用
收藏
页码:553 / 566
页数:14
相关论文
共 36 条