A modified Bessel-type integral transform and its compositions with fractional calculus operators on spaces Fp,μ and F′p,μ

被引:10
作者
Glaeske, HJ
Kilbas, AA
Saigo, M [1 ]
机构
[1] Fukuoka Univ, Dept Appl Math, Fukuoka 8140180, Japan
[2] Univ Jena, Dept Math & Informat, D-07740 Jena, Germany
[3] Belarusian State Univ, Dept Math & Mech, Minsk 220050, BELARUS
关键词
fractional calculus; McBride space; modified Bessel-type integral transform;
D O I
10.1016/S0377-0427(00)00286-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The paper is devoted to study the integral transform (L(gamma,sigma)((beta))f)(x) = integral(0)(infinity)lambda(gamma sigma)((beta))(xt)f(t)dt (x>0)with the kernel lambda(gamma,sigma)((beta))(z)=beta/Gamma(gamma+1-1/beta)integral(1)(infinity)(t(beta)-1)(gamma-1/beta)t(sigma)e(-zt) dt for beta>0; Re(gamma)>1/beta-1; sigma element of R; Re(z)>0, which is a generalization of the modified Bessel function of the third kind of Macdonald function K-gamma(z). Properties of lambda(gamma,sigma)((beta))(z) investigated and compositions of the operator L-gamma,sigma((beta)) with the left- and right-sided Liouville fractional integrals and derivatives are proved. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:151 / 168
页数:18
相关论文
共 34 条
[31]  
SAIGO M, 1993, FUKUOKA U SCI REP, V23, P133
[32]  
SAIGO M, 1996, BOUND VALUE PROBL, P335
[33]  
Shlapakov S. A., 1998, INT J MATH MATH SCI, V21, P713
[34]  
SRIVASTAVA HM, 1982, H FUNCTIONS 1 2 VARI