Dynamics of helical strips

被引:41
作者
Goriely, A
Shipman, P
机构
[1] Univ Arizona, Program Appl Math, Tucson, AZ 85721 USA
[2] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
来源
PHYSICAL REVIEW E | 2000年 / 61卷 / 04期
关键词
D O I
10.1103/PhysRevE.61.4508
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The dynamics of inertial elastic helical thin rods with noncircular cross sections and arbitrary intrinsic curvature, torsion, and twist is studied. The classical Kirchhoff equations are used together with a perturbation scheme at the level of the director basis, and the dispersion relation for helical strips is derived and analyzed. It is shown that all naturally straight helical strips are unstable whereas free-standing helices are always stable. There exists a one-parameter family of stationary helical solutions depending on the ratio of curvature to torsion. A bifurcation analysis with respect to this parameter is performed, and bifurcation curves in the space of elastic parameters are identified. The different modes of instabilities are analyzed.
引用
收藏
页码:4508 / 4517
页数:10
相关论文
共 23 条
[11]  
GORIELY A, UNPUB
[12]   Kinked DNA [J].
Han, WH ;
Lindsay, SM ;
Dlakic, M ;
Harington, RE .
NATURE, 1997, 386 (6625) :563-563
[13]   HELICAL BILAYER STRUCTURES DUE TO SPONTANEOUS TORSION OF THE EDGES [J].
HELFRICH, W .
JOURNAL OF CHEMICAL PHYSICS, 1986, 85 (02) :1085-1087
[14]   ELASTIC THEORY OF HELICAL FIBERS [J].
HELFRICH, W .
LANGMUIR, 1991, 7 (03) :567-568
[15]   SUPERCOILING TRANSITIONS OF CLOSED DNA [J].
JULICHER, F .
PHYSICAL REVIEW E, 1994, 49 (03) :2429-2435
[16]  
Landau L. D., 1959, THEORY ELASTICITY
[17]   HELICAL BACILLUS-SUBTILIS MACROFIBERS - MORPHOGENESIS OF A BACTERIAL MULTICELLULAR MACROORGANISM [J].
MENDELSON, NH .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (05) :2478-2482
[18]   THE ENERGY-SPECTRUM OF A TWISTED FLEXIBLE STRING UNDER ELASTIC RELAXATION [J].
RICCA, RL .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (08) :2335-2352
[19]  
Sokolnikoff I.S., 1946, Mathematical Theory of Elasticity LK
[20]   Lock-on to tape-like behaviour in the torsional buckling of anisotropic rods [J].
van der Heijden, GHM ;
Thompson, JMT .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 112 (1-2) :201-224