Quantitative reconstruction of leukocyte subsets using DNA methylation

被引:113
作者
Accomando, William P. [1 ]
Wiencke, John K. [2 ]
Houseman, E. Andres [3 ]
Nelson, Heather H. [4 ]
Kelsey, Karl T. [1 ,5 ]
机构
[1] Brown Univ, Dept Pathol & Lab Med, Providence, RI 02912 USA
[2] Univ Calif San Francisco, Dept Neurol Surg, San Francisco, CA 94158 USA
[3] Oregon State Univ, Dept Publ Hlth, Corvallis, OR 97331 USA
[4] Univ Minnesota, Dept Epidemiol, Minneapolis, MN 55455 USA
[5] Brown Univ, Dept Epidemiol, Providence, RI 02912 USA
来源
GENOME BIOLOGY | 2014年 / 15卷 / 03期
基金
美国国家卫生研究院;
关键词
REGULATORY T-CELLS; IMMUNE SURVEILLANCE; PERIPHERAL-BLOOD; TUMOR-IMMUNITY; IMMUNOSURVEILLANCE; PLURIPOTENT; PROFILES;
D O I
10.1186/gb-2014-15-3-r50
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Cell lineage-specific DNA methylation patterns distinguish normal human leukocyte subsets and can be used to detect and quantify these subsets in peripheral blood. We have developed an approach that uses DNA methylation to simultaneously quantify multiple leukocyte subsets, enabling investigation of immune modulations in virtually any blood sample including archived samples previously precluded from such analysis. Here we assess the performance characteristics and validity of this approach. Results: Using Illumina Infinium HumanMethylation27 and VeraCode GoldenGate Methylation Assay microarrays, we measure DNA methylation in leukocyte subsets purified from human whole blood and identify cell lineage-specific DNA methylation signatures that distinguish human T cells, B cells, NK cells, monocytes, eosinophils, basophils and neutrophils. We employ a bioinformatics-based approach to quantify these cell types in complex mixtures, including whole blood, using DNA methylation at as few as 20 CpG loci. A reconstruction experiment confirms that the approach could accurately measure the composition of mixtures of human blood leukocyte subsets. Applying the DNA methylation-based approach to quantify the cellular components of human whole blood, we verify its accuracy by direct comparison to gold standard immune quantification methods that utilize physical, optical and proteomic characteristics of the cells. We also demonstrate that the approach is not affected by storage of blood samples, even under conditions prohibiting the use of gold standard methods. Conclusions: Cell mixture distributions within peripheral blood can be assessed accurately and reliably using DNA methylation. Thus, precise immune cell differential estimates can be reconstructed using only DNA rather than whole cells.
引用
收藏
页数:12
相关论文
共 39 条
[1]   Decreased NK Cells in Patients with Head and Neck Cancer Determined in Archival DNA [J].
Accomando, William P. ;
Wiencke, John K. ;
Houseman, E. Andres ;
Butler, Rondi A. ;
Zheng, Shichun ;
Nelson, Heather H. ;
Kelsey, Karl T. .
CLINICAL CANCER RESEARCH, 2012, 18 (22) :6147-6154
[2]   DNA Methylation Analysis as a Tool for Cell Typing [J].
Baron, Udo ;
Tuerbachova, Ivana ;
Hellwag, Alexander ;
Eckhardt, Florian ;
Berlin, Kurt ;
Hoffmuller, Ulrich ;
Gardina, Paul ;
Olek, Sven .
EPIGENETICS, 2006, 1 (01) :55-60
[3]   Genome-wide DNA methylation profiling using Infinium® assay [J].
Bibikova, Marina ;
Le, Jennie ;
Barnes, Bret ;
Saedinia-Melnyk, Shadi ;
Zhou, Lixin ;
Shen, Richard ;
Gunderson, Kevin L. .
EPIGENOMICS, 2009, 1 (01) :177-200
[4]   DNA methylation patterns and epigenetic memory [J].
Bird, A .
GENES & DEVELOPMENT, 2002, 16 (01) :6-21
[5]   Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging [J].
Bocker, Michael T. ;
Hellwig, Isabelle ;
Breiling, Achim ;
Eckstein, Volker ;
Ho, Anthony D. ;
Lyko, Frank .
BLOOD, 2011, 117 (19) :E182-E189
[6]   Cancer immunosurveillance, immunoediting and inflammation: independent or interdependent processes? [J].
Bui, Jack D. ;
Schreiber, Robert D. .
CURRENT OPINION IN IMMUNOLOGY, 2007, 19 (02) :203-208
[7]   Aging and Environmental Exposures Alter Tissue-Specific DNA Methylation Dependent upon CpG Island Context [J].
Christensen, Brock C. ;
Houseman, E. Andres ;
Marsit, Carmen J. ;
Zheng, Shichun ;
Wrensch, Margaret R. ;
Wiemels, Joseph L. ;
Nelson, Heather H. ;
Karagas, Margaret R. ;
Padbury, James F. ;
Bueno, Raphael ;
Sugarbaker, David J. ;
Yeh, Ru-Fang ;
Wiencke, John K. ;
Kelsey, Karl T. .
PLOS GENETICS, 2009, 5 (08)
[8]   Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood [J].
Davies, Matthew N. ;
Volta, Manuela ;
Pidsley, Ruth ;
Lunnon, Katie ;
Dixit, Abhishek ;
Lovestone, Simon ;
Coarfa, Cristian ;
Harris, R. Alan ;
Milosavljevic, Aleksandar ;
Troakes, Claire ;
Al-Sarraj, Safa ;
Dobson, Richard ;
Schalkwyk, Leonard C. ;
Mill, Jonathan .
GENOME BIOLOGY, 2012, 13 (06) :R43
[9]   Evaluation of a flow cytometry method for CD4 T cell enumeration based on volumetric primary CD4 gating using thermoresistant reagents [J].
Dieye, Tandakha Ndiaye ;
Diaw, Papa Alassane ;
Daneau, Geraldine ;
Wade, Djibril ;
Niang, Maguette Sylla ;
Camara, Makhtar ;
Diallo, Abdoul Aziz ;
Kane, Coumba Toure ;
Ndiaye, Halimatou Diop ;
Mbengue, Babacar ;
Dieye, Alioune ;
Kestens, Luc ;
Mboup, Souleymane .
JOURNAL OF IMMUNOLOGICAL METHODS, 2011, 372 (1-2) :7-13
[10]   Cancer immunoediting: from immunosurveillance to tumor escape [J].
Dunn, GP ;
Bruce, AT ;
Ikeda, H ;
Old, LJ ;
Schreiber, RD .
NATURE IMMUNOLOGY, 2002, 3 (11) :991-998