An Informative Feature Selection Method Based on Sparse PCA for VHR Scene Classification

被引:29
作者
Chaib, Souleyman [1 ]
Gu, Yanfeng [2 ]
Yao, Hongxun [1 ]
机构
[1] Harbin Inst Technol, Sch Comp Sci & Technol, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Sch Elect & Informat Engn, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature selection; scene classification; sparse principal component analysis (sPCA);
D O I
10.1109/LGRS.2015.2501383
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Understanding the scenes provided by very high resolution satellite (VHR) imagery has become a critical task. In this letter, we propose a new informative feature selection method for VHR scene classification. First, scale-invariant feature transform and speeded up robust feature operators are used to extract local features from the original VHR images to construct a visual dictionary. A sparse principal component analysis (sPCA) is then adopted to learn a set of informative features from the visual dictionary for each category. Finally, the scenes are represented by sparse informative low-level features. We conducted experiments on the University of California at Merced data set containing 21 different areal scene categories with submeter resolution and the Sydney data set containing seven land-use categories with 0.5-m spatial resolution. The experimental results demonstrate that the proposed method outperforms the state-of-the-art methods even without saliency detection.
引用
收藏
页码:147 / 151
页数:5
相关论文
共 19 条
[1]   Speeded-Up Robust Features (SURF) [J].
Bay, Herbert ;
Ess, Andreas ;
Tuytelaars, Tinne ;
Van Gool, Luc .
COMPUTER VISION AND IMAGE UNDERSTANDING, 2008, 110 (03) :346-359
[2]   Latent Dirichlet allocation [J].
Blei, DM ;
Ng, AY ;
Jordan, MI .
JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) :993-1022
[3]   Effective and Efficient Midlevel Visual Elements-Oriented Land-Use Classification Using VHR Remote Sensing Images [J].
Cheng, Gong ;
Han, Junwei ;
Guo, Lei ;
Liu, Zhenbao ;
Bu, Shuhui ;
Ren, Jinchang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (08) :4238-4249
[4]   Multi-class geospatial object detection and geographic image classification based on collection of part detectors [J].
Cheng, Gong ;
Han, Junwei ;
Zhou, Peicheng ;
Guo, Lei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2014, 98 :119-132
[5]   Unsupervised Feature Learning for Aerial Scene Classification [J].
Cheriyadat, Anil M. .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01) :439-451
[6]   A direct formulation for sparse PCA using semidefinite programming [J].
d'Aspremont, Alexandre ;
El Ghaoui, Laurent ;
Jordan, Michael I. ;
Lanckriet, Gert R. G. .
SIAM REVIEW, 2007, 49 (03) :434-448
[7]   Target detection based on a dynamic subspace [J].
Du, Bo ;
Zhang, Liangpei .
PATTERN RECOGNITION, 2014, 47 (01) :344-358
[8]  
Lazebnik S., 2006, P IEEE COMPUTER SOC, V2, P2169, DOI 10.1109/CVPR.2006.68
[9]  
Lowe D., 1999, P 7 IEEE INT C COMP, V2, P1150, DOI [10.1109/ICCV.1999.790410, DOI 10.1109/ICCV.1999.790410]
[10]   Land-Use Classification With Compressive Sensing Multifeature Fusion [J].
Mekhalfi, Mohamed L. ;
Melgani, Farid ;
Bazi, Yakoub ;
Alajlan, Naif .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2015, 12 (10) :2155-2159