Robust multivariate regression

被引:88
作者
Rousseeuw, PJ [1 ]
van Aelst, S
van Driessen, K
Agulló, J
机构
[1] Univ Antwerp, Dept Math & Comp Sci, B-2020 Antwerp, Belgium
[2] Univ Antwerp, Fac Appl Econ, B-2020 Antwerp, Belgium
[3] Univ Ghent, Dept Appl Math & Comp Sci, B-9000 Ghent, Belgium
[4] Univ Alicante, Dept Econ Anal, E-03080 Alicante, Spain
关键词
breakdown value; diagnostic plot; influence function; minimum covariance determinant; reweighting;
D O I
10.1198/004017004000000329
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a robust method for multivariate regression based on robust estimation of the joint location and scatter matrix of the explanatory and response variables. As a robust estimator of location and scatter, we use the minimum covariance determinant (MCD) estimator of Rousseeuw. Based on simulations, we investigate the finite-sample performance and robustness of the estimator. To increase the efficiency, we propose a reweighted estimator selected from several possible reweighting schemes. The resulting multivariate regression does not need much computation time and is applied to real datasets. We show that the multivariate regression estimator has the appropriate equivariance properties, has a bounded influence function, and inherits the breakdown value of the MCD estimator. These theoretical robustness properties confirm the good finite-sample results obtained from the simulations.
引用
收藏
页码:293 / 305
页数:13
相关论文
共 49 条
[1]  
Alqallaf Fatemah A., 2002, P 8 ACM SIGKDD INT C, P14, DOI DOI 10.1145/775047.775050
[2]  
[Anonymous], 1999, APPL MULTIVARIATE AN
[3]  
[Anonymous], 1987, ROBUST REGRESSION OU
[4]   GENERAL CLASSES OF INFLUENCE MEASURES FOR MULTIVARIATE REGRESSION [J].
BARRETT, BE ;
LING, RF .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1992, 87 (417) :184-191
[5]   DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS .3. DISPERSION [J].
BICKEL, PJ ;
LEHMANN, EL .
ANNALS OF STATISTICS, 1976, 4 (06) :1139-1158
[6]   Predicting multivariate responses in multiple linear regression [J].
Breiman, L ;
Friedman, JH .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1997, 59 (01) :3-37
[7]   ASYMPTOTICS FOR THE MINIMUM COVARIANCE DETERMINANT ESTIMATOR [J].
BUTLER, RW ;
DAVIES, PL ;
JHUN, M .
ANNALS OF STATISTICS, 1993, 21 (03) :1385-1400
[8]   RESIDUALS AND INFLUENCE IN THE MULTIVARIATE LINEAR-MODEL [J].
CARONI, C .
STATISTICIAN, 1987, 36 (04) :365-370
[9]   A model-free test for reduced rank in multivariate regression [J].
Cook, RD ;
Setodji, CM .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2003, 98 (462) :340-351
[10]   Influence function and efficiency of the minimum covariance determinant scatter matrix estimator [J].
Croux, C ;
Haesbroeck, G .
JOURNAL OF MULTIVARIATE ANALYSIS, 1999, 71 (02) :161-190