Metabolic responses to the reduction in palmitate caused by disruption of the FATB gene in Arabidopsis

被引:49
作者
Bonaventure, G [1 ]
Ba, XM [1 ]
Ohlrogge, J [1 ]
Pollard, M [1 ]
机构
[1] Michigan State Univ, Dept Plant Biol, E Lansing, MI 48824 USA
关键词
D O I
10.1104/pp.104.043372
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Disruption of the FATB gene in Arabidopsis results in a two-thirds reduction in saturated fatty acids, largely palmitate, in the leaf extra-plastidic phospholipids and a reduction in the growth rate of the mutant compared to wild type (Bonaventure G, Salas JJ, Pollard MR, Ohlrogge JB [2003] Plant Cell 15: 1020-1033). In this study, we report that although fatb-ko seedlings grow more slowly than wild type, the rate of fatty acid synthesis in leaves of the mutant increases by 40%. This results in approximately the same amount of palmitate exported from the plastid as in wild type but an increase in oleate export of about 55%. To maintain constant amounts of fatty acids in leaves, thereby counterbalancing their higher rate of production, the mutant also increases its rate of fatty acid degradation. Although fatb-ko leaves have higher rates of fatty acid synthesis and turnover, the relative proportions of membrane lipids are similar to wild type. Thus, homeostatic mechanisms to preserve membrane compositions compensate for substantial changes in rates of fatty acid and glycerolipid metabolism in the mutant. Pulse-chase labeling studies show that in fatb-ko leaves there is a net increase in the synthesis of both prokaryotic and eukaryotic lipids and consequently of their turnover. The net loss of palmitate from phosphatidylcholine plus phosphatidyl-ethanolamine is similar for wild type and mutant, suggesting that mechanisms are not present that can preferentially preserve the saturated fatty acids. In summary, the leaf cell responds to the loss of saturated fatty acid production in the fatb-ko mutant by increasing both fatty acid synthesis and degradation, but in doing so the mechanisms for increased fatty acid turnover contribute to the lowering of the percentage of saturated fatty acids found in eukaryotic lipids.
引用
收藏
页码:1269 / 1279
页数:11
相关论文
共 41 条
[1]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[2]   Understanding in vivo carbon precursor supply for fatty acid synthesis in leaf tissue [J].
Bao, XM ;
Focke, M ;
Pollard, M ;
Ohlrogge, J .
PLANT JOURNAL, 2000, 22 (01) :39-50
[3]   Arabidopsis genes involved in acyl lipid metabolism. A 2003 census of the candidates, a study of the distribution of expressed sequence tags in organs, and a Web-based database [J].
Beisson, F ;
Koo, AJK ;
Ruuska, S ;
Schwender, J ;
Pollard, M ;
Thelen, JJ ;
Paddock, T ;
Salas, JJ ;
Savage, L ;
Milcamps, A ;
Mhaske, VB ;
Cho, YH ;
Ohlrogge, JB .
PLANT PHYSIOLOGY, 2003, 132 (02) :681-697
[4]   Disruption of the FATB gene in Arabidopsis demonstrates an essential role of saturated fatty acids in plant growth [J].
Bonaventure, G ;
Salas, JJ ;
Pollard, MR ;
Ohlrogge, JB .
PLANT CELL, 2003, 15 (04) :1020-1033
[5]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[6]   Expression of antisense acyl carrier protein-4 reduces leaf lipid content in Arabidopsis tissue [J].
Branen, JK ;
Shintani, DK ;
Engeseth, NJ .
PLANT PHYSIOLOGY, 2003, 132 (02) :748-756
[7]   Variation in Aurelia aurita. [J].
Browne, ET .
BIOMETRIKA, 1901, 1 :90-108
[8]   FLUXES THROUGH THE PROKARYOTIC AND EUKARYOTIC PATHWAYS OF LIPID-SYNTHESIS IN THE 16-3 PLANT ARABIDOPSIS-THALIANA [J].
BROWSE, J ;
WARWICK, N ;
SOMERVILLE, CR ;
SLACK, CR .
BIOCHEMICAL JOURNAL, 1986, 235 (01) :25-31
[9]   GLYCEROLIPID SYNTHESIS - BIOCHEMISTRY AND REGULATION [J].
BROWSE, J ;
SOMERVILLE, C .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1991, 42 :467-506
[10]   LIGHT CONTROL OF FATTY-ACID SYNTHESIS AND DIURNAL FLUCTUATIONS OF FATTY-ACID COMPOSITION IN LEAVES [J].
BROWSE, J ;
ROUGHAN, PG ;
SLACK, CR .
BIOCHEMICAL JOURNAL, 1981, 196 (01) :347-354