Developments and trends in the parallel solution of linear systems

被引:63
作者
Duff, IS [1 ]
van der Vorst, HA
机构
[1] Atlas Ctr, Rutherford Appleton Lab, CCLRC, Dept Comp & Informat Syst, Didcot OX11 0QX, Oxon, England
[2] Univ Utrecht, Inst Math, NL-3508 TA Utrecht, Netherlands
关键词
linear systems; dense matrices; sparse matrices; tridiagonal systems; parallelism; direct methods; iterative methods; Krylov methods; preconditioning;
D O I
10.1016/S0167-8191(99)00077-0
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this review paper, we consider some important developments and trends in algorithm design for the solution of linear systems concentrating on aspects that involve the exploitation of parallelism. We briefly discuss the solution of dense linear systems, before studying the solution of sparse equations by direct and iterative methods. We consider preconditioning techniques for iterative solvers and discuss some of the present research issues in this field. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1931 / 1970
页数:40
相关论文
共 210 条
[61]  
DEKEYSER J, 1994, LECT NOTES COMPUTER, V797, P227
[62]  
DEMMEL J, 1995, SUPERLU USERS GUIDE
[63]   A supernodal approach to sparse partial pivoting [J].
Demmel, JW ;
Eisenstat, SC ;
Gilbert, JR ;
Li, XYS ;
Liu, JWH .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) :720-755
[64]  
DEMMEL JW, 1993, ACTA NUMERICA 1993 C
[65]   REDUCING THE EFFECT OF GLOBAL COMMUNICATION IN GMRES(M) AND CG ON PARALLEL DISTRIBUTED-MEMORY COMPUTERS [J].
DESTURLER, E ;
VANDERVORST, HA .
APPLIED NUMERICAL MATHEMATICS, 1995, 18 (04) :441-459
[66]   A performance model for Krylov subspace methods on mesh-based parallel computers [J].
deSturler, E .
PARALLEL COMPUTING, 1996, 22 (01) :57-74
[67]  
DESTURLER E, 1991, 9185 DELFT U TECHN
[68]   PARALLEL CONJUGATE GRADIENT-LIKE ALGORITHMS FOR SOLVING SPARSE NONSYMMETRIC LINEAR-SYSTEMS ON A VECTOR MULTIPROCESSOR [J].
DIBROZOLO, GR ;
ROBERT, Y .
PARALLEL COMPUTING, 1989, 11 (02) :223-239
[69]  
DIBROZOLO GR, 1986, SPARSE MATRIX VECTOR, P513
[70]  
DOI S, 1991, APPL NUMER MATH, V7, P417, DOI 10.1016/0168-9274(91)90011-N