Analysis of Host-Mediated Repair Mechanisms after Human CNS-Stem Cell Transplantation for Spinal Cord Injury: Correlation of Engraftment with Recovery

被引:87
作者
Hooshmand, Mitra J.
Sontag, Christopher J.
Uchida, Nobuko
Tamaki, Stan
Anderson, Aileen J.
Cummings, Brian J.
机构
[1] Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA
[2] StemCells Inc., Palo Alto, CA
[3] Department of Physical Medicine and Rehabilitation, Reeve-Irvine Research Center, University of California Irvine, Irvine, CA
来源
PLOS ONE | 2009年 / 4卷 / 06期
关键词
CHONDROITIN SULFATE PROTEOGLYCANS; OLFACTORY ENSHEATHING CELLS; PROMOTE LOCOMOTOR RECOVERY; FUNCTIONAL RECOVERY; DELAYED TRANSPLANTATION; CORTICOSPINAL TRACT; AXON GROWTH; PRECURSOR CELLS; GRAFT-SURVIVAL; CONTUSION;
D O I
10.1371/journal.pone.0005871
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Human central nervous system-stem cells grown as neurospheres (hCNS-SCns) self-renew, are multipotent, and have potential therapeutic applications following trauma to the spinal cord. We have previously shown locomotor recovery in immunodeficient mice that received a moderate contusion spinal cord injury (SCI) and hCNS-SCns transplantation 9 days post-injury (dpi). Engrafted hCNS-SCns exhibited terminal differentiation to myelinating oligodendrocytes and synapse-forming neurons. Further, selective ablation of human cells using Diphtheria toxin (DT) abolished locomotor recovery in this paradigm, suggesting integration of human cells within the mouse host as a possible mechanism for the locomotor improvement. However, the hypothesis that hCNS-SCns could alter the host microenvironment as an additional or alternative mechanism of recovery remained unexplored; we tested that hypothesis in the present study. Methods and Findings: Stereological quantification of human cells using a human-specific cytoplasmic marker demonstrated successful cell engraftment, survival, migration and limited proliferation in all hCNS-SCns transplanted animals. DT administration at 16 weeks post-transplant ablated 80.5% of hCNS-SCns. Stereological quantification for lesion volume, tissue sparing, descending serotonergic host fiber sprouting, chondroitin sulfate proteoglycan deposition, glial scarring, and angiogenesis demonstrated no evidence of host modification within the mouse spinal cord as a result of hCNS-SCns transplantation. Biochemical analyses supplemented stereological data supporting the absence of neural stem-cell mediated host repair. However, linear regression analysis of the number of engrafted hCNS-SCns vs. the number of errors on a horizontal ladder beam task revealed a strong correlation between these variables (r = -0.78, p<0.05), suggesting that survival and engraftment were directly related to a quantitative measure of recovery. Conclusions: Altogether, the data suggest that the locomotor improvements associated with hCNS-SCns transplantation were not due to modifications within the host microenvironment, supporting the hypothesis that human cell integration within the host circuitry mediates functional recovery following a 9 day delayed transplant.
引用
收藏
页数:20
相关论文
共 107 条
[1]   DNA damage and apoptosis in Alzheimer's disease: Colocalization with c-Jun immunoreactivity, relationship to brain area, and effect of postmortem delay [J].
Anderson, AJ ;
Su, JH ;
Cotman, CW .
JOURNAL OF NEUROSCIENCE, 1996, 16 (05) :1710-1719
[2]  
Asher R A, 2001, Prog Brain Res, V132, P611
[3]   Enriched Monolayer Precursor Cell Cultures from Micro-Dissected Adult Mouse Dentate Gyrus Yield Functional Granule Cell-Like Neurons [J].
Babu, Harish ;
Cheung, Giselle ;
Kettenmann, Helmut ;
Palmer, Theo D. ;
Kempermann, Gerd .
PLOS ONE, 2007, 2 (04)
[4]  
Bambakidis Nicholas C, 2004, Spine J, V4, P16, DOI 10.1016/j.spinee.2003.07.004
[5]   Basso mouse scale for locomotion detects differences in recovery after spinal cord in ury in five common mouse strains [J].
Basso, DM ;
Fisher, LC ;
Anderson, AJ ;
Jakeman, LB ;
McTigue, DM ;
Popovich, PG .
JOURNAL OF NEUROTRAUMA, 2006, 23 (05) :635-659
[6]   A SENSITIVE AND RELIABLE LOCOMOTOR RATING-SCALE FOR OPEN-FIELD TESTING IN RATS [J].
BASSO, DM ;
BEATTIE, MS ;
BRESNAHAN, JC .
JOURNAL OF NEUROTRAUMA, 1995, 12 (01) :1-21
[7]   Restoring function after spinal cord injury: Promoting spontaneous regeneration with stem cells and activity-based therapies [J].
Belegu, Visar ;
Oudega, Martin ;
Gary, Devin S. ;
McDonald, John W. .
NEUROSURGERY CLINICS OF NORTH AMERICA, 2007, 18 (01) :143-+
[8]   MORPHOMETRIC ANALYSIS OF EXPERIMENTAL SPINAL-CORD INJURY IN THE CAT - THE RELATION OF INJURY INTENSITY TO SURVIVAL OF MYELINATED AXONS [J].
BLIGHT, AR ;
DECRESCITO, V .
NEUROSCIENCE, 1986, 19 (01) :321-+
[9]   Chondroitinase ABC promotes functional recovery after spinal cord injury [J].
Bradbury, EJ ;
Moon, LDF ;
Popat, RJ ;
King, VR ;
Bennett, GS ;
Patel, PN ;
Fawcett, JW ;
McMahon, SB .
NATURE, 2002, 416 (6881) :636-640
[10]   Gradual loss of myelin and formation of an astrocytic scar during Wallerian degeneration in the human spinal cord [J].
Buss, A ;
Brook, GA ;
Kakulas, B ;
Martin, D ;
Franzen, R ;
Schoenen, J ;
Noth, J ;
Schmitt, AB .
BRAIN, 2004, 127 :34-44