Reversing quantum dynamics with near-optimal quantum and classical fidelity

被引:194
作者
Barnum, H [1 ]
Knill, E [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
D O I
10.1063/1.1459754
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the problem of reversing quantum dynamics, with the goal of preserving an initial state's quantum entanglement or classical correlation with a reference system. We exhibit an approximate reversal operation, adapted to the initial density operator and the "noise" dynamics to be reversed. We show that its error in preserving either quantum or classical information is no more than twice that of the optimal reversal operation. Applications to quantum algorithms and information transmission are discussed. (C) 2002 American Institute of Physics.
引用
收藏
页码:2097 / 2106
页数:10
相关论文
共 13 条
[1]  
[Anonymous], 1978, THEOR PROB APPL
[2]   Quantum error detection II: Bounds [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :789-800
[3]   Quantum error detection I: Statement of the problem [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :778-788
[5]  
ETTINGER JM, 1999, QUANTPH9901034
[6]   Classical information capacity of a quantum channel [J].
Hausladen, P ;
Jozsa, R ;
Schumacher, B ;
Westmoreland, M ;
Wootters, WK .
PHYSICAL REVIEW A, 1996, 54 (03) :1869-1876
[7]  
Horn R. A., 1986, Matrix analysis
[8]   A COMPLETE CLASSIFICATION OF QUANTUM ENSEMBLES HAVING A GIVEN DENSITY-MATRIX [J].
HUGHSTON, LP ;
JOZSA, R ;
WOOTTERS, WK .
PHYSICS LETTERS A, 1993, 183 (01) :14-18
[9]   Theory of quantum error-correcting codes [J].
Knill, E ;
Laflamme, R .
PHYSICAL REVIEW A, 1997, 55 (02) :900-911
[10]   Information-theoretic approach to quantum error correction and reversible measurement [J].
Nielsen, MA ;
Caves, CM ;
Schumacher, B ;
Barnum, H .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1998, 454 (1969) :277-304