Magnetic interactions in transition-metal-doped ZnO:: An ab initio study

被引:287
作者
Gopal, Priya [1 ]
Spaldin, Nicola A. [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Mat, Santa Barbara, CA 93106 USA
关键词
D O I
10.1103/PhysRevB.74.094418
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We calculate the nature of magnetic interactions in transition-metal doped ZnO using the local spin density approximation and (LSDA) the LSDA+U (Coulomb interaction) method of density functional theory. We investigate the following four cases: (i) single-transition-metal-ion types (Cr, Mn, Fe, Co, Ni and Cu) substituted at Zn sites, (ii) substitutional magnetic transition-metal ions combined with additional Cu and Li dopants, (iii) substitutional magnetic transition-metal ions combined with oxygen vacancies, and (iv) pairs of magnetic ion types (Co and Fe, Co and Mn). Extensive convergence tests indicate that the calculated magnetic ground state is unusually sensitive to the k-point mesh and energy cutoff, the details of the geometry optimizations, and the choice of the exchange-correlation functional. We find that ferromagnetic coupling is sometimes favorable for single-type substitutional transition-metal ions within the LSDA. However, the nature of magnetic interactions changes when correlations on the transition-metal ion are treated within the more realistic LSDA+U method, often disfavoring the ferromagnetic state. The magnetic configuration is sensitive to the detailed arrangement of the ions and the amount of lattice relaxation, except in the case of oxygen vacancies when an antiferromagnetic state is always favored.
引用
收藏
页数:9
相关论文
共 70 条
[31]   From ultrasoft pseudopotentials to the projector augmented-wave method [J].
Kresse, G ;
Joubert, D .
PHYSICAL REVIEW B, 1999, 59 (03) :1758-1775
[32]   Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J].
Kresse, G ;
Furthmuller, J .
COMPUTATIONAL MATERIALS SCIENCE, 1996, 6 (01) :15-50
[33]   Highly enhanced Curie temperature in low-temperature annealed [Ga,Mn]As epilayers [J].
Ku, KC ;
Potashnik, SJ ;
Wang, RF ;
Chun, SH ;
Schiffer, P ;
Samarth, N ;
Seong, MJ ;
Mascarenhas, A ;
Johnston-Halperin, E ;
Myers, RC ;
Gossard, AC ;
Awschalom, DD .
APPLIED PHYSICS LETTERS, 2003, 82 (14) :2302-2304
[34]  
LANDOLTBORNSTEI, 2002, CONDENSED MATTER
[35]   Ferromagnetic versus antiferromagnetic interaction in Co-doped ZnO [J].
Lee, EC ;
Chang, KJ .
PHYSICAL REVIEW B, 2004, 69 (08)
[36]   The path to ZnO devices: donor and acceptor dynamics [J].
Look, DC ;
Jones, RL ;
Sizelove, JR ;
Garces, NY ;
Giles, NC ;
Halliburton, LE .
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2003, 195 (01) :171-177
[37]   Recent advances in ZnO materials and devices [J].
Look, DC .
MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 80 (1-3) :383-387
[38]   DIRECT AND TEMPERATURE-MODULATED REFLECTANCE SPECTRA OF MNO, COO, AND NIO [J].
MESSICK, L ;
WALKER, WC ;
GLOSSER, R .
PHYSICAL REVIEW B, 1972, 6 (10) :3941-&
[39]   Ferroelectricity Li-doped ZnO:X thin films and their application in optical switching devices [J].
Nagata, T ;
Shimura, T ;
Nakano, Y ;
Ashida, A ;
Fujimura, N ;
Ito, T .
JAPANESE JOURNAL OF APPLIED PHYSICS PART 1-REGULAR PAPERS SHORT NOTES & REVIEW PAPERS, 2001, 40 (9B) :5615-5618
[40]   ZnO: growth, doping & processing [J].
Norton, D. P. ;
Heo, Y. W. ;
Ivill, M. P. ;
Ip, K. ;
Pearton, S. J. ;
Chisholm, M. F. ;
Steiner, T. .
MATERIALS TODAY, 2004, 7 (06) :34-40