Polyakov loop percolation and deconfinement in SU(2) gauge theory

被引:38
作者
Fortunato, S [1 ]
Satz, H [1 ]
机构
[1] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
关键词
D O I
10.1016/S0370-2693(00)00091-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The deconfinement transition in SU(2) gauge theory and the magnetization transition in the Ising model belong to the same universality class. The critical behaviour of the Ising model can be characterized either as spontaneous breaking of the Z(2)? symmetry of spin states or as percolation of appropriately defined spin clusters. We show that deconfinement in SU(2) gauge theory can be specified as percolation of Polyakov loop clusters with Fortuin-Kasteleyn bond weights, leading to the same (Onsager) critical exponents as the conventional order-disorder description based on the Polykov loop expectation value. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:311 / 314
页数:4
相关论文
共 23 条
[1]   EQUIVALENCE OF POTTS MODEL OR WHITNEY POLYNOMIAL WITH AN ICE-TYPE MODEL [J].
BAXTER, RJ ;
KELLAND, SB ;
WU, FY .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1976, 9 (03) :397-406
[2]   A NEW METHOD FOR THE PARTITION-FUNCTION OF DISCRETE-SYSTEMS WITH APPLICATION TO THE 3D ISING-MODEL [J].
BHANOT, G ;
BLACK, S ;
CARTER, P ;
SALVADOR, R .
PHYSICS LETTERS B, 1987, 183 (3-4) :331-336
[3]   CLUSTERS AND ISING CRITICAL DROPLETS - A RENORMALIZATION GROUP-APPROACH [J].
CONIGLIO, A ;
KLEIN, W .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1980, 13 (08) :2775-2780
[4]   Critical behaviour of SU(2) lattice gauge theory. A complete analysis with the chi(2)-method [J].
Engels, J ;
Mashkevich, S ;
Scheideler, T ;
Zinovjev, G .
PHYSICS LETTERS B, 1996, 365 (1-4) :219-224
[5]   COMPLEX ZEROS IN THE PARTITION-FUNCTION OF THE 4-DIMENSIONAL SU(2) LATTICE GAUGE-MODEL [J].
FALCIONI, M ;
MARINARI, E ;
PACIELLO, ML ;
PARISI, G ;
TAGLIENTI, B .
PHYSICS LETTERS B, 1982, 108 (4-5) :331-332
[6]   OPTIMIZED MONTE-CARLO DATA-ANALYSIS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1989, 63 (12) :1195-1198
[7]   NEW MONTE-CARLO TECHNIQUE FOR STUDYING PHASE-TRANSITIONS [J].
FERRENBERG, AM ;
SWENDSEN, RH .
PHYSICAL REVIEW LETTERS, 1988, 61 (23) :2635-2638
[8]   RANDOM-CLUSTER MODEL .1. INTRODUCTION AND RELATION TO OTHER MODELS [J].
FORTUIN, CM ;
KASTELEYN, PW .
PHYSICA, 1972, 57 (04) :536-+
[9]   EFFECTIVE ACTION IN MONTE-CARLO CALCULATIONS WITH DYNAMIC FERMIONS [J].
GAVAI, RV ;
GOCKSCH, A ;
OGILVIE, M .
PHYSICAL REVIEW LETTERS, 1986, 56 (08) :815-818
[10]  
GOKSCH A, 1985, PHYS REV LETT, V54, P1772