Polyakov loop percolation and deconfinement in SU(2) gauge theory

被引:38
作者
Fortunato, S [1 ]
Satz, H [1 ]
机构
[1] Univ Bielefeld, Fak Phys, D-33501 Bielefeld, Germany
关键词
D O I
10.1016/S0370-2693(00)00091-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The deconfinement transition in SU(2) gauge theory and the magnetization transition in the Ising model belong to the same universality class. The critical behaviour of the Ising model can be characterized either as spontaneous breaking of the Z(2)? symmetry of spin states or as percolation of appropriately defined spin clusters. We show that deconfinement in SU(2) gauge theory can be specified as percolation of Polyakov loop clusters with Fortuin-Kasteleyn bond weights, leading to the same (Onsager) critical exponents as the conventional order-disorder description based on the Polykov loop expectation value. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:311 / 314
页数:4
相关论文
共 23 条
[21]   NONUNIVERSAL CRITICAL-DYNAMICS IN MONTE-CARLO SIMULATIONS [J].
SWENDSEN, RH ;
WANG, JS .
PHYSICAL REVIEW LETTERS, 1987, 58 (02) :86-88
[22]   THE FINITE-TEMPERATURE PHASE-TRANSITION OF SU(2) GAUGE-FIELDS IN 2+1 DIMENSIONS [J].
TEPER, M .
PHYSICS LETTERS B, 1993, 313 (3-4) :417-424
[23]   COLLECTIVE MONTE-CARLO UPDATING FOR SPIN SYSTEMS [J].
WOLFF, U .
PHYSICAL REVIEW LETTERS, 1989, 62 (04) :361-364