Photometric redshifts with the Multilayer Perceptron Neural Network: Application to the HDF-S and SDSS

被引:108
作者
Vanzella, E
Cristiani, S
Fontana, A
Nonino, M
Arnouts, S
Giallongo, E
Grazian, A
Fasano, G
Popesso, P
Saracco, P
Zaggia, S
机构
[1] European So Observ, D-85748 Garching, Germany
[2] Univ Padua, Dipartimento Astron, I-35122 Padua, Italy
[3] INAF, Osservatorio Astron Trieste, I-40131 Trieste, Italy
[4] INAF, Osservatorio Astron Roma, Monte Porzio Catone, Italy
[5] Lab Astrophys Marseille, F-13012 Marseille, France
[6] INAF, Osservatorio Astron Padova, I-35122 Padua, Italy
[7] Max Planck Inst Extraterr Phys, D-85740 Garching, Germany
[8] INAF, Osservatorio Astron Brera, I-20121 Milan, Italy
关键词
galaxies : distances and redshifts; methods : data analysis; techniques : photometric;
D O I
10.1051/0004-6361:20040176
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present a technique for the estimation of photometric redshifits based on feed-forward neural networks. The Multilayer Perceptron (MLP) Artificial Neural Network is used to predict photometric redshifts in the HDF-S from an ultra deep-multicolor catalog. Various possible approaches for the training of the neural network are explored, including the deepest and most complete spectroscopic redshift catalog currently available (the Hubble Deep Field North dataset) and models of the spectral energy distribution of galaxies available in the literature. The MLP can be trained on observed data, theoretical data and mixed samples. The prediction of the method is,tested on the spectroscopic sample in the HDF-S (44 galaxies). Over the entire redshift range, 0.1 < z < 3.5, the agreement between the photometric and spectroscopic redshifts in the HDF-S is good: the training on mixed data produces sigma(z)(test) similar or equal to 0.11, showing that model libraries together with observed data provide a sufficiently complete description of the galaxy population. The neural system capability is also tested in a low redshift regime, 0 < z < 0.4, using the Sloan Digital Sky Survey Data Release One (DR1) spectroscopic sample. The resulting accuracy on 88 108 galaxies is sigma(z)(test) similar or equal to 0.022. Inputs other than galaxy colors - such as morphology, angular size and surface brightness - may be easily incorporated in the neural network technique. An important feature, in view of the application of the technique to large databases, is the computational speed: in the evaluation phase, redshifts of 10(5)galaxies are estimated in few seconds.
引用
收藏
页码:761 / 776
页数:16
相关论文
共 46 条
[1]   The first data release of the Sloan Digital Sky Survey [J].
Abazajian, K ;
Adelman-McCarthy, JK ;
Agüeros, MA ;
Allam, SS ;
Anderson, SF ;
Annis, J ;
Bahcall, NA ;
Baldry, IK ;
Bastian, S ;
Berlind, A ;
Bernardi, M ;
Blanton, MR ;
Blythe, N ;
Bochanski, JJ ;
Boroski, WN ;
Brewington, H ;
Briggs, JW ;
Brinkmann, J ;
Brunner, RJ ;
Budavári, T ;
Carey, LN ;
Carr, MA ;
Castander, FJ ;
Chiu, K ;
Collinge, MJ ;
Connolly, AJ ;
Covey, KR ;
Csabai, I ;
Dalcanton, JJ ;
Dodelson, S ;
Doi, M ;
Dong, F ;
Eisenstein, DJ ;
Evans, ML ;
Fan, XH ;
Feldman, PD ;
Finkbeiner, DP ;
Friedman, SD ;
Frieman, JA ;
Fukugita, M ;
Gal, RR ;
Gillespie, B ;
Glazebrook, K ;
Gonzalez, CF ;
Gray, J ;
Grebel, EK ;
Grodnicki, L ;
Gunn, JE ;
Gurbani, VK ;
Hall, PB .
ASTRONOMICAL JOURNAL, 2003, 126 (04) :2081-2086
[2]   Measuring and modelling the redshift evolution of clustering:: the Hubble Deep Field North [J].
Arnouts, S ;
Cristiani, S ;
Moscardini, L ;
Matarrese, S ;
Lucchin, F ;
Fontana, A ;
Giallongo, E .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1999, 310 (02) :540-556
[3]  
BAILERJONES CAL, 2001, P WORKSH AUT DAT AN
[4]   Galaxy types in the Sloan Digital Sky Survey using supervised artificial neural networks [J].
Ball, NM ;
Loveday, J ;
Fukugita, M ;
Nakamura, O ;
Okamura, S ;
Brinkmann, J ;
Brunner, RJ .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2004, 348 (03) :1038-1046
[5]   TRAINING NEURAL NETS WITH THE REACTIVE TABU SEARCH [J].
BATTITI, R ;
TECCHIOLLI, G .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1995, 6 (05) :1185-1200
[6]   Bayesian photometric redshift estimation [J].
Benítez, N .
ASTROPHYSICAL JOURNAL, 2000, 536 (02) :571-583
[7]   SExtractor: Software for source extraction [J].
Bertin, E ;
Arnouts, S .
ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 117 (02) :393-404
[8]  
Bertsekas DP, 1997, J. Oper. Res. Soc., V48, P334, DOI 10.1057/palgrave.jors.2600425
[9]  
Bishop C. M., 1996, Neural networks for pattern recognition
[10]  
Calzetti D, 1997, AIP CONF PROC, V408, P403, DOI 10.1063/1.53764