Dispersive regime of circuit QED: Photon-dependent qubit dephasing and relaxation rates

被引:237
作者
Boissonneault, Maxime [1 ]
Gambetta, J. M. [2 ,3 ]
Blais, Alexandre [1 ]
机构
[1] Univ Sherbrooke, Dept Phys & Regroupement Quebecois Mat Pointe, Sherbrooke, PQ J1K 2R1, Canada
[2] Univ Waterloo, Inst Quantum Comp, Waterloo, ON N2L 3G1, Canada
[3] Univ Waterloo, Dept Phys & Astron, Waterloo, ON N2L 3G1, Canada
来源
PHYSICAL REVIEW A | 2009年 / 79卷 / 01期
关键词
Jaynes-Cummings model; lumped parameter networks; nonlinear optics; quantum electrodynamics; quantum theory; QUANTUM; ENTANGLEMENT; STATES; ATOMS;
D O I
10.1103/PhysRevA.79.013819
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Superconducting electrical circuits can be used to study the physics of cavity quantum electrodynamics (QED) in new regimes, therefore realizing circuit QED. For quantum-information processing and quantum optics, an interesting regime of circuit QED is the dispersive regime, where the detuning between the qubit transition frequency and the resonator frequency is much larger than the interaction strength. In this paper, we investigate how nonlinear corrections to the dispersive regime affect the measurement process. We find that in the presence of pure qubit dephasing, photon population of the resonator used for the measurement of the qubit act as an effective heat bath, inducing incoherent relaxation and excitation of the qubit. Measurement thus induces both dephasing and mixing of the qubit, something that can reduce the quantum nondemolition aspect of the readout. Using quantum trajectory theory, we show that this heat bath can induce quantum jumps in the qubit state. Nonlinear effects can also reduce the achievable signal-to-noise ratio of a homodyne measurement of the voltage.
引用
收藏
页数:17
相关论文
共 46 条
[21]   Progressive field-state collapse and quantum non-demolition photon counting [J].
Guerlin, Christine ;
Bernu, Julien ;
Deleglise, Samuel ;
Sayrin, Clement ;
Gleyzes, Sebastien ;
Kuhr, Stefan ;
Brune, Michel ;
Raimond, Jean-Michel ;
Haroche, Serge .
NATURE, 2007, 448 (7156) :889-U1
[22]   Controlling the spontaneous emission of a superconducting transmon qubit [J].
Houck, A. A. ;
Schreier, J. A. ;
Johnson, B. R. ;
Chow, J. M. ;
Koch, Jens ;
Gambetta, J. M. ;
Schuster, D. I. ;
Frunzio, L. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
PHYSICAL REVIEW LETTERS, 2008, 101 (08)
[23]   Generating single microwave photons in a circuit [J].
Houck, A. A. ;
Schuster, D. I. ;
Gambetta, J. M. ;
Schreier, J. A. ;
Johnson, B. R. ;
Chow, J. M. ;
Frunzio, L. ;
Majer, J. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2007, 449 (7160) :328-331
[24]  
HOUCK AA, COMMUNICATION
[25]   Vacuum Rabi oscillations in a macroscopic superconducting qubit LC oscillator system -: art. no. 127006 [J].
Johansson, J ;
Saito, S ;
Meno, T ;
Nakano, H ;
Ueda, M ;
Semba, K ;
Takayanagi, H .
PHYSICAL REVIEW LETTERS, 2006, 96 (12)
[26]   Is there a spontaneous breaking of the parity symmetry of the Jaynes-Cummings model without the rotating-wave approximation? [J].
Lo, CF ;
Liu, KL ;
Ng, KM ;
Yuen, PH .
QUANTUM AND SEMICLASSICAL OPTICS, 1998, 10 (06) :L63-L68
[27]   Quantum non-demolition measurement of a superconducting two-level system [J].
Lupascu, A. ;
Saito, S. ;
Picot, T. ;
De Groot, P. C. ;
Harmans, C. J. P. M. ;
Mooij, J. E. .
NATURE PHYSICS, 2007, 3 (02) :119-123
[28]   High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator [J].
Lupascu, A ;
Driessen, EFC ;
Roschier, L ;
Harmans, CJPM ;
Mooij, JE .
PHYSICAL REVIEW LETTERS, 2006, 96 (12)
[29]   Cavity quantum electrodynamics: Coherence in context [J].
Mabuchi, H ;
Doherty, AC .
SCIENCE, 2002, 298 (5597) :1372-1377
[30]   Coupling superconducting qubits via a cavity bus [J].
Majer, J. ;
Chow, J. M. ;
Gambetta, J. M. ;
Koch, Jens ;
Johnson, B. R. ;
Schreier, J. A. ;
Frunzio, L. ;
Schuster, D. I. ;
Houck, A. A. ;
Wallraff, A. ;
Blais, A. ;
Devoret, M. H. ;
Girvin, S. M. ;
Schoelkopf, R. J. .
NATURE, 2007, 449 (7161) :443-447