Multidimensional infrared spectroscopy of water. I. Vibrational dynamics in two-dimensional IR line shapes

被引:166
作者
Loparo, Joseph J. [1 ]
Roberts, Sean T.
Tokmakoff, Andrei
机构
[1] MIT, Dept Chem, Cambridge, MA 02139 USA
[2] MIT, George R Harrison Spect Lab, Cambridge, MA 02139 USA
关键词
D O I
10.1063/1.2382895
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In this and the following paper, we describe the ultrafast structural fluctuations and rearrangements of the hydrogen bonding network of water using two-dimensional (2D) infrared spectroscopy. 2D IR spectra covering all the relevant time scales of molecular dynamics of the hydrogen bonding network of water were studied for the OH stretching absorption of HOD in D2O. Time-dependent evolution of the 2D IR line shape serves as a spectroscopic observable that tracks how different hydrogen bonding environments interconvert while changes in spectral intensity result from vibrational relaxation and molecular reorientation of the OH dipole. For waiting times up to the vibrational lifetime of 700 fs, changes in the 2D line shape reflect the spectral evolution of OH oscillators induced by hydrogen bond dynamics. These dynamics, characterized through a set of 2D line shape analysis metrics, show a rapid 60 fs decay, an underdamped oscillation on a 130 fs time scale induced by hydrogen bond stretching, and a long time decay constant of 1.4 ps. 2D surfaces for waiting times larger than 700 fs are dominated by the effects of vibrational relaxation and the thermalization of this excess energy by the solvent bath. Our modeling based on fluctuations with Gaussian statistics is able to reproduce the changes in dispersed pump-probe and 2D IR spectra induced by these relaxation processes, but misses the asymmetry resulting from frequency-dependent spectral diffusion. The dynamical origin of this asymmetry is discussed in the companion paper. (c) 2006 American Institute of Physics.
引用
收藏
页数:13
相关论文
共 69 条
[1]   A DUAL-DETECTOR OPTICAL HETERODYNE RECEIVER FOR LOCAL OSCILLATOR NOISE SUPPRESSION [J].
ABBAS, GL ;
CHAN, VWS ;
YEE, TK .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1985, 3 (05) :1110-1122
[2]   THE GROTTHUSS MECHANISM [J].
AGMON, N .
CHEMICAL PHYSICS LETTERS, 1995, 244 (5-6) :456-462
[3]   Water dynamics: Vibrational echo correlation spectroscopy and comparison to molecular dynamics simulations [J].
Asbury, JB ;
Steinel, T ;
Stromberg, C ;
Corcelli, SA ;
Lawrence, CP ;
Skinner, JL ;
Fayer, MD .
JOURNAL OF PHYSICAL CHEMISTRY A, 2004, 108 (07) :1107-1119
[4]   Dynamics of water probed with vibrational echo correlation spectroscopy [J].
Asbury, JB ;
Steinel, T ;
Kwak, K ;
Corcelli, SA ;
Lawrence, CP ;
Skinner, JL ;
Fayer, MD .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (24) :12431-12446
[5]   Hydrogen bond breaking probed with multidimensional stimulated vibrational echo correlation spectroscopy [J].
Asbury, JB ;
Steinel, T ;
Stromberg, C ;
Gaffney, KJ ;
Piletic, IR ;
Fayer, MD .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (24) :12981-12997
[6]  
BOEIJ WPD, 1996, CHEM PHYS LETT, V253, P53
[7]   Tunable two-dimensional femtosecond spectroscopy [J].
Brixner, T ;
Stiopkin, IV ;
Fleming, GR .
OPTICS LETTERS, 2004, 29 (08) :884-886
[8]   The integrated photon echo and solvation dynamics [J].
Cho, MH ;
Yu, JY ;
Joo, TH ;
Nagasawa, Y ;
Passino, SA ;
Fleming, GR .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (29) :11944-11953
[9]   Combined electronic structure/molecular dynamics approach for ultrafast infrared spectroscopy of dilute HOD in liquid H2O and D2O [J].
Corcelli, SA ;
Lawrence, CP ;
Skinner, JL .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (17) :8107-8117
[10]   Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O [J].
Cowan, ML ;
Bruner, BD ;
Huse, N ;
Dwyer, JR ;
Chugh, B ;
Nibbering, ETJ ;
Elsaesser, T ;
Miller, RJD .
NATURE, 2005, 434 (7030) :199-202