Global temperature constraints on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission

被引:255
作者
Brady, Oliver J. [1 ]
Golding, Nick [1 ]
Pigott, David M. [1 ]
Kraemer, Moritz U. G. [1 ]
Messina, Jane P. [1 ]
Reiner, Robert C., Jr. [2 ,3 ]
Scott, Thomas W. [2 ,3 ]
Smith, David L. [1 ,3 ,4 ]
Gething, Peter W. [1 ]
Hay, Simon I. [1 ,3 ]
机构
[1] Univ Oxford, Dept Zool, Spatial Ecol & Epidemiol Grp, Oxford OX1 3PS, England
[2] Univ Calif Davis, Dept Entomol & Nematol, Davis, CA 95616 USA
[3] Natl Inst Hlth, Fogarty Int Ctr, Bethesda, MD 20892 USA
[4] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
来源
PARASITES & VECTORS | 2014年 / 7卷
基金
美国国家卫生研究院; 英国生物技术与生命科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
Aedes; Aegypti; Albopictus; Temperature; Distribution; Suitability; Competence; Disease model; Map; VECTOR COMPETENCE; PLASMODIUM-FALCIPARUM; SPATIAL-DISTRIBUTION; DIPTERA-CULICIDAE; COLD-ACCLIMATION; FEEDING PATTERNS; PUERTO-RICO; FEVER; POPULATION; THAILAND;
D O I
10.1186/1756-3305-7-338
中图分类号
R38 [医学寄生虫学]; Q [生物科学];
学科分类号
07 ; 0710 ; 09 ; 100103 ;
摘要
Background: Dengue is a disease that has undergone significant expansion over the past hundred years. Understanding what factors limit the distribution of transmission can be used to predict current and future limits to further dengue expansion. While not the only factor, temperature plays an important role in defining these limits. Previous attempts to analyse the effect of temperature on the geographic distribution of dengue have not considered its dynamic intra-annual and diurnal change and its cumulative effects on mosquito and virus populations. Methods: Here we expand an existing modelling framework with new temperature-based relationships to model an index proportional to the basic reproductive number of the dengue virus. This model framework is combined with high spatial and temporal resolution global temperature data to model the effects of temperature on Aedes aegypti and Ae. albopictus persistence and competence for dengue virus transmission. Results: Our model predicted areas where temperature is not expected to permit transmission and/or Aedes persistence throughout the year. By reanalysing existing experimental data our analysis indicates that Ae. albopictus, often considered a minor vector of dengue, has comparable rates of virus dissemination to its primary vector, Ae. aegypti, and when the longer lifespan of Ae. albopictus is considered its competence for dengue virus transmission far exceeds that of Ae. aegypti. Conclusions: These results can be used to analyse the effects of temperature and other contributing factors on the expansion of dengue or its Aedes vectors. Our finding that Ae. albopictus has a greater capacity for dengue transmission than Ae. aegypti is contrary to current explanations for the comparative rarity of dengue transmission in established Ae. albopictus populations. This suggests that the limited capacity of Ae. albopictus to transmit DENV is more dependent on its ecology than vector competence. The recommendations, which we explicitly outlined here, point to clear targets for entomological investigation.
引用
收藏
页数:17
相关论文
共 94 条
[71]   Reciprocal Tripartite Interactions between the Aedes aegypti Midgut Microbiota, Innate Immune System and Dengue Virus Influences Vector Competence [J].
Ramirez, Jose Luis ;
Souza-Neto, Jayme ;
Torres Cosme, Rolando ;
Rovira, Jose ;
Ortiz, Alma ;
Pascale, Juan M. ;
Dimopoulos, George .
PLOS NEGLECTED TROPICAL DISEASES, 2012, 6 (03)
[72]   A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970-2010 [J].
Reiner, Robert C., Jr. ;
Perkins, T. Alex ;
Barker, Christopher M. ;
Niu, Tianchan ;
Fernando Chaves, Luis ;
Ellis, Alicia M. ;
George, Dylan B. ;
Le Menach, Arnaud ;
Pulliam, Juliet R. C. ;
Bisanzio, Donal ;
Buckee, Caroline ;
Chiyaka, Christinah ;
Cummings, Derek A. T. ;
Garcia, Andres J. ;
Gatton, Michelle L. ;
Gething, Peter W. ;
Hartley, David M. ;
Johnston, Geoffrey ;
Klein, Eili Y. ;
Michael, Edwin ;
Lindsay, Steven W. ;
Lloyd, Alun L. ;
Pigott, David M. ;
Reisen, William K. ;
Ruktanonchai, Nick ;
Singh, Brajendra K. ;
Tatem, Andrew J. ;
Kitron, Uriel ;
Hay, Simon I. ;
Scott, Thomas W. ;
Smith, David L. .
JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2013, 10 (81)
[73]  
Reiter P, 1998, J AM MOSQUITO CONTR, V14, P83
[74]  
Richards SL, 2006, J MED ENTOMOL, V43, P543, DOI 10.1603/0022-2585(2006)43[543:HPOAAD]2.0.CO
[75]  
2
[76]   The global distribution of yellow fever and dengue [J].
Rogers, D. J. ;
Wilson, A. J. ;
Hay, S. I. ;
Graham, A. J. .
ADVANCES IN PARASITOLOGY, VOL 62: GLOBAL MAPPING OF INFECTIOUS DISEASES: METHODS, EXAMPLES AND EMERGING APPLICATIONS, 2006, 62 :181-220
[77]  
Romi R, 2006, J AM MOSQUITO CONTR, V22, P149, DOI 10.2987/8756-971X(2006)22[149:CAAOOF]2.0.CO
[78]  
2
[79]   Longitudinal studies of Aedes aegypti (Diptera: Culicidae) in Thailand and Puerto Rico:: Blood feeding frequency [J].
Scott, TW ;
Amerasinghe, PH ;
Morrison, AC ;
Lorenz, LH ;
Clark, GG ;
Strickman, D ;
Kittayapong, P ;
Edman, JD .
JOURNAL OF MEDICAL ENTOMOLOGY, 2000, 37 (01) :89-101
[80]   DETECTION OF MULTIPLE BLOOD FEEDING IN AEDES-AEGYPTI (DIPTERA, CULICIDAE) DURING A SINGLE GONOTROPHIC CYCLE USING A HISTOLOGIC TECHNIQUE [J].
SCOTT, TW ;
CLARK, GG ;
LORENZ, LH ;
AMERASINGHE, PH ;
REITER, P ;
EDMAN, JD .
JOURNAL OF MEDICAL ENTOMOLOGY, 1993, 30 (01) :94-99