A simple model for phase transitions: From the discrete to the continuum problem

被引:23
作者
Pagano, S
Paroni, R
机构
[1] Univ Montpellier 2, UMR 5508, LMGC, F-24005 Montpellier, France
[2] Univ Udine, Dipartimento Ingn Civile, I-33100 Udine, Italy
关键词
phase transitions; discrete systems; double-well potentials; Gamma-convergence;
D O I
10.1090/qam/1955225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study a one-dimensional model simulating the shear in a two-dimensional body. We analyse the discrete system and we deduce the continuum limit of the lattice model as the lattice parameter goes to zero. Different energies are introduced and linked together.
引用
收藏
页码:89 / 109
页数:21
相关论文
共 22 条
[11]  
MAUGIN GA, 1999, OXFORD MATH MONOGRAP
[12]   Simulated mesoscopic structures of a domain wall in a ferroelastic lattice [J].
Novak, J ;
Salje, EKH .
EUROPEAN PHYSICAL JOURNAL B, 1998, 4 (03) :279-284
[13]   Surface structure of domain walls [J].
Novak, J ;
Salje, EKH .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1998, 10 (21) :L359-L366
[14]  
PARONI R, IN PRESS Z ANGEW MAT
[15]   DYNAMICS OF PATTERNS IN FERROELASTIC-MARTENSITIC TRANSFORMATIONS .2. QUASI-CONTINUUM MODEL [J].
POUGET, J .
PHYSICAL REVIEW B, 1991, 43 (04) :3582-3592
[16]   DYNAMICS OF PATTERNS IN FERROELASTIC-MARTENSITIC TRANSFORMATIONS .1. LATTICE MODEL [J].
POUGET, J .
PHYSICAL REVIEW B, 1991, 43 (04) :3575-3581
[17]  
POUGET J, 1995, P 8 INT S VARN BULG
[18]   Mechanics of a discrete chain with bi-stable elements [J].
Puglisi, G ;
Truskinovsky, L .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2000, 48 (01) :1-27
[19]  
REN X, IN PRESS J ELASTICIT
[20]   Discretization and hysteresis [J].
Rogers, RC ;
Truskinovsky, L .
PHYSICA B, 1997, 233 (04) :370-375