Polyamide- and polycarbonate-based nanocomposites prepared from thermally stable imidazolium organoclay

被引:25
作者
Cui, Lili [1 ,2 ]
Bara, Jason E. [3 ]
Brun, Yefim [4 ]
Yoo, Youngjae [1 ,2 ]
Yoon, P. J. [5 ]
Paul, D. R. [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[2] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
[3] Univ Colorado, Dept Chem & Biol Engn, Boulder, CO 80309 USA
[4] EI DuPont Co, Cent Res & Dev, Wilmington, DE 19880 USA
[5] So Clay Prod, Gonzales, TX 78629 USA
关键词
Nanocomposites; Organoclays; Thermal stability; MELT-PROCESSING CONDITIONS; SILICATE NANOCOMPOSITES; NYLON-6; NANOCOMPOSITES; DEGRADATION; MORPHOLOGY; EXFOLIATION; PERFORMANCE; PURITY;
D O I
10.1016/j.polymer.2009.03.036
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This paper explores the possible advantages of the more thermally stable imidazolium-based organoclay over a more conventional ammonium-based organoclay for facilitating exfoliation and minimizing polymer matrix degradation in melt blended polyamide 6 (PA-6) and polycarbonate (PC) nanocomposites. The thermal stability of the two organoclays was evaluated by TGA analyses. The extent of clay exfoliation was judged by analysis of the morphology and tensile modulus of these nanocomposites formed using a DSM Microcompounder, while the extent of color formation and molecular weight change were used to evaluate polymer matrix degradation. For PA-6 and PC nanocomposites, the use of the imidazolium organoclay only produced slight differences in both exfoliation and molecular weight change, although the imidazolium organoclay is remarkably more thermally stable than the ammonium organoclay. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2492 / 2502
页数:11
相关论文
共 36 条
[1]   DEGRADATIONAL EFFECTS ON BISPHENOL-A POLYCARBONATE EXTRUDED AT HIGH SHEAR STRESSES [J].
ABBAS, KB .
POLYMER, 1981, 22 (06) :836-841
[2]   THERMAL-DEGRADATION OF BISPHENOL A POLYCARBONATE [J].
ABBAS, KB .
POLYMER, 1980, 21 (08) :936-940
[3]   Thermal degradation studies of alkyl-imidazolium salts and their application in nanocomposites [J].
Awad, WH ;
Gilman, JW ;
Nyden, M ;
Harris, RH ;
Sutto, TE ;
Callahan, J ;
Trulove, PC ;
DeLong, HC ;
Fox, DM .
THERMOCHIMICA ACTA, 2004, 409 (01) :3-11
[4]  
Brun Y., 2005, ACS Symposium Series, V893, P281
[5]  
Carlin RT, 2002, NATO SCI SER II MATH, V52, P321
[6]   Morphology and properties of thermoplastic polyurethane nanocomposites: Effect of organoclay structure [J].
Chavarria, F. ;
Paul, D. R. .
POLYMER, 2006, 47 (22) :7760-7773
[7]   Comparison of nanocomposites based on nylon 6 and nylon 66 [J].
Chavarria, F ;
Paul, DR .
POLYMER, 2004, 45 (25) :8501-8515
[8]   Styrene-acrylonitrile (SAN) layered silicate nanocomposites prepared by melt compounding [J].
Chu, LL ;
Anderson, SK ;
Harris, JD ;
Beach, MW ;
Morgan, AB .
POLYMER, 2004, 45 (12) :4051-4061
[9]   Effect of organoclay purity and degradation on nanocomposite performance, Part 1: Surfactant degradation [J].
Cui, Lili ;
Khramov, Dimitri M. ;
Bielawski, Christopher W. ;
Hunter, D. L. ;
Yoon, P. J. ;
Paul, D. R. .
POLYMER, 2008, 49 (17) :3751-3761
[10]   Effect of organoclay purity and degradation on nanocomposite performance, Part 2: Morphology and properties of nanocomposites [J].
Cui, Lili ;
Hunter, D. L. ;
Ybon, P. J. ;
Paul, D. R. .
POLYMER, 2008, 49 (17) :3762-3769