Pt-free transparent counter electrodes for dye-sensitized solar cells prepared from carbon nanotube micro-balls

被引:115
作者
Cha, Seung I. [1 ]
Koo, B. K. [1 ]
Seo, S. H. [1 ]
Lee, Dong Y. [1 ]
机构
[1] Korea Electrotechnol Res Inst, Energy Convers Device Res Ctr, Chang Won 641120, South Korea
关键词
D O I
10.1039/b918920c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Since their initial invention, dye-sensitized solar cells (DSSCs) have offered cost-effective photovoltaic systems. For their counter electrodes, DSSCs generally employ Pt nanoparticles. However, Pt is expensive, rare, and already widely in demand as catalyst in various chemical and electrochemical fields. Substitutes for Pt have been sought among carbon materials, such as activated carbon, carbon black, and carbon nanotubes. Carbon nanotubes (CNTs) are the most appealing candidates, because of their favorable electrochemical catalytic activities. Unfortunately, as with other carbon materials, CNTs cannot provide high charge exchange currents. To obtain performances comparable to Pt counter electrodes, large surface areas are required, resulting in thick electrodes. We have found that transparent Pt-free counter electrodes suitable for DSSCs can be prepared using MWCNT micro-balls deposited on transparent substrates. The deposition density (i.e., the number of CNT micro-balls per unit area) can be controlled, allowing transparency and DSSC performance to be tuned. For a counter electrode transparency of 70%, the efficiency of a DSSC using CNT micro-balls is more than 80% of one using Pt nanoparticles. The prepared CNT micro-balls can be usefully applied in other electrochemical devices, such as battery and supercapacitors.
引用
收藏
页码:659 / 662
页数:4
相关论文
共 17 条
[1]   Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies [J].
Bach, U ;
Lupo, D ;
Comte, P ;
Moser, JE ;
Weissörtel, F ;
Salbeck, J ;
Spreitzer, H ;
Grätzel, M .
NATURE, 1998, 395 (6702) :583-585
[2]   Electrochemical properties of single-wall carbon nanotube electrodes [J].
Barisci, JN ;
Wallace, GG ;
Chattopadhyay, D ;
Papadimitrakopoulos, F ;
Baughman, RH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2003, 150 (09) :E409-E415
[3]   New class of carbon-nanotube aerogel electrodes for electrochemical power sources [J].
Bordjiba, Tarik ;
Mohamedi, Mohamed ;
Dao, Le H. .
ADVANCED MATERIALS, 2008, 20 (04) :815-+
[4]   Direct growth of flexible carbon nanotube electrodes [J].
Chen, Jun ;
Minett, Andrew I. ;
Liu, Yong ;
Lynam, Carol ;
Sherrell, Peter ;
Wang, Caiyun ;
Wallace, Gordon G. .
ADVANCED MATERIALS, 2008, 20 (03) :566-+
[5]   Conducting polymer/carbon nanotube composite as counter electrode of dye-sensitized solar cells [J].
Fan, Benhu ;
Mei, Xiaoguang ;
Sun, Kuan ;
Ouyang, Jianyong .
APPLIED PHYSICS LETTERS, 2008, 93 (14)
[6]   Electrochemistry at carbon nanotube electrodes: Is the nanotube tip more active than the sidewall? [J].
Gong, Kuanping ;
Chakrabarti, Supriya ;
Dai, Liming .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (29) :5446-5450
[7]   Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells [J].
Hong, Wenjing ;
Xu, Yuxi ;
Lu, Gewu ;
Li, Chun ;
Shi, Gaoquan .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (10) :1555-1558
[8]   High-performance carbon counter electrode for dye-sensitized solar cells [J].
Imoto, K ;
Takahashi, K ;
Yamaguchi, T ;
Komura, T ;
Nakamura, J ;
Murata, K .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2003, 79 (04) :459-469
[9]   Seasoning effect of dye-sensitized solar cells with different counter electrodes [J].
Koo, Bo-Kun ;
Lee, Dong-Yoon ;
Kim, Hyun-Ju ;
Lee, Won-Jae ;
Song, Jae-Sung ;
Kim, Hee-Jae .
JOURNAL OF ELECTROCERAMICS, 2006, 17 (01) :79-82
[10]   Recent Advances in Dye-Sensitized Solar Cells [J].
Lenzmann, F. O. ;
Kroon, J. M. .
ADVANCES IN OPTOELECTRONICS, 2007, 2007