Diffusion in a one-dimensional random medium and hyperbolic Brownian motion

被引:39
作者
Comtet, A
Monthus, C
机构
[1] UNIV PARIS 06,LPTPE,F-75252 PARIS,FRANCE
[2] UNIV PARIS 11,DIV PHYS THEOR,CNRS,UNITE RECH,F-91406 ORSAY,FRANCE
[3] UNIV PARIS 06,DIV PHYS THEOR,CNRS,UNITE RECH,F-91406 ORSAY,FRANCE
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1996年 / 29卷 / 07期
关键词
D O I
10.1088/0305-4470/29/7/006
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Classical diffusion in a random medium involves an exponential functional of Brownian motion. This functional also appears in the study of Brownian diffusion on a Riemann surface of constant negative curvature. We analyse in detail this relationship and study various distributions using stochastic calculus and functional integration.
引用
收藏
页码:1331 / 1345
页数:15
相关论文
共 44 条
[41]  
TERRAS A, 1905, HARMONIC ANAL SYMMET
[42]   ON SOME EXPONENTIAL FUNCTIONALS OF BROWNIAN-MOTION [J].
YOR, M .
ADVANCES IN APPLIED PROBABILITY, 1992, 24 (03) :509-531
[43]   FROM PLANAR BROWNIAN WINDINGS TO ASIAN OPTIONS [J].
YOR, M .
INSURANCE MATHEMATICS & ECONOMICS, 1993, 13 (01) :23-34
[44]   TIME SUBSTITUTIONS IN STOCHASTIC-PROCESSES AS A TOOL IN PATH INTEGRATION [J].
YOUNG, A ;
DEWITTMORETTE, C .
ANNALS OF PHYSICS, 1986, 169 (01) :140-166